【題目】如圖是某電商2019121日至1216日的日銷售量(單位:件)統(tǒng)計圖,銷量小于100稱為該商品滯銷,銷量大于200稱為該商品暢銷,則下列關(guān)于該商品在這16天的銷量的說法不正確的是( )

A.該商品出現(xiàn)過連續(xù)4天暢銷

B.該商品暢銷的頻率為0.5

C.相鄰兩天該商品銷量之差的最大值為195

D.該商品銷量的平均數(shù)小于200

【答案】C

【解析】

根據(jù)統(tǒng)計圖,逐項判斷,即可得出結(jié)果.

A選項,由統(tǒng)計圖可得,1212號至1215號四天銷量都大于200,故A正確;

B選項,由統(tǒng)計圖可得,16天內(nèi)共有8天銷量大于200,故暢銷的頻率為0.5,故B正確;

C選項,由統(tǒng)計圖可得,127號與128號兩天的銷量只差最大,為,故C錯;

D選項,由統(tǒng)計圖可得:16天的總銷量為

所以其平均數(shù)為,故D正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標方程化為直角坐標方程;

(Ⅱ)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為三次函數(shù),且其圖象關(guān)于原點對稱,當時,的極小值為-1,則

(1)函數(shù)的解析式__________;

(2)函數(shù)的單調(diào)遞增區(qū)間為___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=2,a2=4,且當n≥2時,an2=an-1an+1,;

1)求數(shù)列{an}的通項公式an;

2)若bn=2n-1an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 為正三角形, , 為棱的中點.

(1)求證:平面平面;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成語“半斤八兩”意思是一個半斤,一個八兩,“半斤”是指用“十兩秤”來稱某種物體的重量,“八兩”是指用“十六兩秤”來稱該物體的重量為八兩,比喻彼此一樣,不相上下.成語出自宋·無名氏《張協(xié)狀元》戲文第28出:“兩個半斤八兩,各家歸去不須嗔.”事實上“十六兩秤”是我國古代曾經(jīng)使用非常廣泛的一種稱重衡器,秤桿上一兩一星,每斤共計16克星,分別代表北斗七星、南斗六星和福祿壽.買賣交易時,短1兩“減!保2兩“虧祿”,缺3兩“折壽”,商家以“貨真價實,童叟無欺”自律.“十六兩秤”的計數(shù)采用的是十六進制,即“逢十六進一”,若用A表示10,那么轉(zhuǎn)換為十進制為______.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是( )

A. 命題“若,則”的否命題為:“若

B. 為真命題,為假命題,則均為假命題

C. 命題“若成等比數(shù)列,則”的逆命題為真命題

D. 命題“若,則”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCDEFAB,AB=2BC=EF=1,AE=,DE=3,∠BAD=60°GBC的中點,HCD中點.

1)求證:平面FGH∥平面BED;

2)求證:BD⊥平面AED;

3)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案