【題目】第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年在北京-張家口舉行,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高變成如右所示的莖葉圖(單位: ):若身高在以上(包括)定義為“高個(gè)子”,身高在以下(不包括)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”.
(1)如果分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?
(2)若從所有“高個(gè)子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.
【答案】(1)(2)見解析,1
【解析】
(1)先根據(jù)分層抽樣確定5人中“高個(gè)子”和“非高個(gè)子”人數(shù),再先求對(duì)立事件(都不是“高個(gè)子”)概率,最后根據(jù)對(duì)立事件概率公式求結(jié)果;
(2)先確定隨機(jī)變量,再分別求對(duì)應(yīng)概率,寫出分布列,最后根據(jù)數(shù)學(xué)期望公式得結(jié)果.
解:(1)根據(jù)莖葉圖,有“高個(gè)子”12人,“非高個(gè)子”18人用分層抽樣的方法,每個(gè)人被抽中的概率是,所以選中的“高個(gè)子”有人,“非高個(gè)子”有人.用事件表示“至少有一名高個(gè)子”被選中”,則它的對(duì)立事件表示“沒有一名“高個(gè)子”被選中”,則,因此,至少有一人是“高個(gè)子”的概率是.
(2)依題意,的取值為0,1,2,3.
,,
,.
因此,的分布列如下:
0 | 1 | 2 | 3 | |
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB=45°,四邊形CDEF為直角梯形,EF∥DC,ED⊥CD,AB=3EF=3,ED=a,AD.
(1)求證:AD⊥BF;
(2)若線段CF上存在一點(diǎn)M,滿足AE∥平面BDM,求的值;
(3)若a=1,求二面角D﹣BC﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)寫出直線和曲線的直角坐標(biāo)方程;
(2)過動(dòng)點(diǎn)且平行于的直線交曲線于兩點(diǎn),若,求動(dòng)點(diǎn)到直線的最近距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,過的直線與相交于兩點(diǎn),點(diǎn)滿足.
(1)當(dāng)的傾斜角為時(shí),求直線的方程;
(2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn), 為的中點(diǎn).
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).
(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);
(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,,與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】時(shí)至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國(guó)面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對(duì)的一項(xiàng)課題.某市號(hào)召市民盡量減少開車出行以綠色低碳的出行方式支持節(jié)能減排.原來(lái)天天開車上班的王先生積極響應(yīng)政府號(hào)召,準(zhǔn)備每天從騎自行車和開小車兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車方式上班,隨后每天用“一次性拋擲6枚均勻硬幣”的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.
(1)求王先生前三天騎自行車上班的天數(shù)X的分布列;
(2)由條件概率我們可以得到概率論中一個(gè)很重要公式——全概率公式.其特殊情況如下:如果事件相互對(duì)立并且,則對(duì)任一事件B有.設(shè)表示事件“第n天王先生上班選擇的是騎自行車出行方式”的概率.
①用表示;
②王先生的這種選擇隨機(jī)選擇出行方式有沒有積極響應(yīng)該市政府的號(hào)召,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】向量集合,對(duì)于任意,以及任意,都有,則稱為“類集”,現(xiàn)有四個(gè)命題:
①若為“類集”,則集合也是“類集”;
②若,都是“類集”,則集合也是“類集”;
③若都是“類集”,則也是“類集”;
④若都是“類集”,且交集非空,則也是“類集”.
其中正確的命題有________(填所有正確命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com