精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}的前n項和為Sn , Sn=2an﹣3.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求數列{nan}的前n項和Tn

【答案】解:(Ⅰ)由Sn=2an﹣3,①得a1=3,Sn1=2an1﹣3(n≥2),② ①﹣②,得an=2an﹣2an1 , 即an=2an1(n≥2,n∈N),
所以數列{an}是以3為首項,2為公比的等比數列,
所以 (n∈N*).
(Ⅱ) ,

作差得 ,
(n∈N*)
【解析】(Ⅰ)由Sn=2an﹣3,得a1=3,Sn1=2an1﹣3(n≥2),相減可得an=2an1(n≥2,n∈N),再利用等比數列的通項公式即可得出.(Ⅱ)利用“錯位相減法”、等比數列的求和公式即可得出.
【考點精析】通過靈活運用數列的前n項和和數列的通項公式,掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】運行如圖所示的程序框圖,輸出i和S的值分別為(
A.2,15
B.2,7
C.3,15
D.3,7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為 ,(α為參數),以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,直線l的極坐標方程為
(1)求曲線C的極坐標方程;
(2)設P為曲線C上一點,Q為直線l上一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數的值域為.

1)判斷此函數的奇偶性,并說明理由;

2)判斷此函數在的單調性,并用單調性的定義證明你的結論;

3)求出上的最小值,并求的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數a,b,c滿足a,b,c∈R+
(Ⅰ)若ab=1,證明:( + 2≥4;
(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy,直線l的參數方程是 (t為參數).在以O為極點,x軸正半軸為極軸建立極坐標系中,曲線C:ρ=4sinθ.
(1)當m=﹣1,α=30°時,判斷直線l與曲線C的位置關系;
(2)當m=1時,若直線與曲l線C相交于A,B兩點,設P(1,0),且||PA|﹣|PB||=1,求直線l的傾斜角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論正確的是(

A.命題“若,則”為假命題

B.命題“若,則”的否命題為假命題

C.命題“若,則方程有實根”的逆命題為真命題

D.命題“若,則”的逆否命題為真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點分別為圓F1、F2 , M是C上一點,|MF1|=2,且| || |=2
(1)求橢圓C的方程;
(2)當過點P(4,1)的動直線l與橢圓C相交于不同兩點A、B時,線段AB上取點Q,且Q滿足| || |=| || |,證明點Q總在某定直線上,并求出該定直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經過點(﹣4,2ln2)
(1)討論函數f(x)的單調性
(2)若不等式 恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案