已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
(1)(2)

試題分析:
(1)根據(jù)橢圓的中心在原點可以設出橢圓的標準方程,已知焦點坐標,故可求的c值,所以利用長軸長與短軸長之比和a,b,c的關系可以建立關于a,b的兩個方程式聯(lián)立消元即可求的a,b的值,得到橢圓的標準方差.(2)根據(jù)題意設點P的坐標,表示,利用點P在橢圓上,得到關于m和P點橫坐標的表達式,利用二次函數(shù)最值問題,可以得到取得最小值時,m和P點橫坐標之間的關系,再利用P橫坐標的范圍得到m的取值范圍即可.
試題解析:
(1)設橢圓的方程為.      1分
由題意有:,      3分
解得.      5分
故橢圓的方程為.      6分
(2)設為橢圓上的動點,由于橢圓方程為,故.     7分
因為,所以
   10分
因為當最小時,點恰好落在橢圓的右頂點,即當時,
取得最小值.而,
故有,解得.        12分
又點在橢圓的長軸上,即.       13分
故實數(shù)的取值范圍是.      14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設,過點作與軸不重合的直線交橢圓于、兩點,連結、分別交直線兩點.試問直線、的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓經過點,其左、右頂點分別是,左、右焦點分別是、(異于、)是橢圓上的動點,連接交直線、兩點,若成等比數(shù)列.

(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓上兩點,點的坐標為.
(1)當關于點對稱時,求證:;
(2)當直線經過點時,求證:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知離心率為的橢圓的頂點恰好是雙曲線的左右焦點,點是橢圓上不同于的任意一點,設直線的斜率分別為.
(1)求橢圓的標準方程;
(2)當,在焦點在軸上的橢圓上求一點Q,使該點到直線(的距離最大。
(3)試判斷乘積“(”的值是否與點(的位置有關,并證明你的結論;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,F1F2分別為橢圓C的左、右兩個焦點,A、B為兩個頂點,該橢圓的離心率為,的面積為.

(1)求橢圓C的方程和焦點坐標;
(2)作與AB平行的直線交橢圓于P、Q兩點,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、分別是橢圓的左、右焦點,點在橢圓上,線段的中點在軸上,若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知分別是橢圓的左,右焦點,現(xiàn)以為圓心作一個圓恰好經過橢圓中心并且交橢圓于點,若過的直線是圓的切線,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案