對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.32]=0,[5.68]=5.若n為正整數(shù),an=[
n4
]
,Sn為數(shù)列{an}的前n項和,則S8=
6
6
、S4n=
2n2-n
2n2-n
分析:根據(jù)n為正整數(shù),an=[
n
4
]
,找出規(guī)律,再利用等差數(shù)列的求和公式進行求和即可.
解答:解:由題意,∵n為正整數(shù),an=[
n
4
]
,
a(4k+1)=[
4k+1
4
]=k
a(4k+2)=[
4k+2
4
]=k
,a(4k+3)=[
4k+3
4
]=k
,a4k=[
4k
4
]=k

∴S8=a1+a2+…+a8=0+1+2+3=6,S4n=a1+a2+…+a4n=4(0+1+2+3+…+n-1)+n=4×
n(n-1)
2
+n=2n2-n
故答案為:6;2n2-n.
點評:本題考查數(shù)列與函數(shù)的綜合運用,主要涉及了數(shù)列的推導(dǎo)與歸納,同時又是新定義題,應(yīng)熟悉定義,將問題轉(zhuǎn)化為已知等差數(shù)列的求和問題去解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)x,用[x]表示不超過x的最大整數(shù),則函數(shù)f(x)=[x]稱為高斯函數(shù)或取整函數(shù).若an=f(
n3
),n∈N*,Sn為數(shù)列{an}的前n項和,則S3n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.32]=0,[5.68]=5.若n為正整數(shù),an=[
n4
]
,Sn為數(shù)列{an}的前n項和,則S4n=
(2n-1)n
(2n-1)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.98]=0,[1.2]=1,若n∈N*,an=[
n
4
]
,Sn為數(shù)列{an}的前n項和,則S4n為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)x,用[x]表示不超過x的最大整數(shù),如[0.3]=0,[5.6]=5.若n∈N*,an=[
n4
]
,Sn為數(shù)列{an}的前n項和,則S8=
 
;S4n=
 

查看答案和解析>>

同步練習(xí)冊答案