精英家教網 > 高中數學 > 題目詳情

【題目】如圖,曲線與正方形 的邊界相切.

(1)求的值;

(2)設直線交曲線,,是否存在這樣的曲線使得, 成等差數列?若存在,求出實數的取值范圍;若不存在,請說明理由.

【答案】(1) (2)

【解析】試題分析:1)由,得(n+mx28mx+16mmn=0,由此利用韋達定理能求出m+n;(2)若|CA||AB|,|BD|成等差數列,則|AB|=,由,得(n+mx2+2bmx+mb2mn=0.由此利用根的判別式、韋達定理、弦長公式,結合已知條件能求出結果.

解析:

(Ⅰ)由題,得,

有⊿=,

化簡的.

,所以 從而有

(Ⅱ)由,

,即

,

可得,

所以

可得,

從而

所以,即有,符合, 故當實數的取值范圍是時,存在直線和曲線,使得, 成等差數列

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若點的極坐標為,的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?

(2)現從調查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,記這3人中“微信控”的人數為,試求的分布列和數學期望.

參考公式: ,其中.

參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產業(yè)結構,調整出名員工從事第三產業(yè),調整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高

(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調整出多少名員工從事第三產業(yè)?

(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , 均為等邊三角形,點的中點.

(1)證明:平面平面;

(2)若點在線段上且,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,曲線與正方形 的邊界相切.

(1)求的值;

(2)設直線交曲線,是否存在這樣的曲線使得, , 成等差數列?若存在,求出實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為的函數是奇函數.

1)求a,b的值;

2)判斷函數的單調性,并用定義證明;

3)當時,恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)當時,求函數在點處的切線方程;

(Ⅱ)當時,討論的單調性;

(Ⅲ)是否存在實數,對任意,且恒成立?

若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中, , , , ,二面角的大小為.

(1)求證: 平面

(2)求平面與平面所成的角(銳角)的大;

(3)若的中點,求直線與平面所成的角的大小.

查看答案和解析>>

同步練習冊答案