【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(﹣1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于﹣ .
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問(wèn):是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】
(1)解:因?yàn)辄c(diǎn)B與A(﹣1,1)關(guān)于原點(diǎn)O對(duì)稱,所以點(diǎn)B得坐標(biāo)為(1,﹣1).
設(shè)點(diǎn)P的坐標(biāo)為(x,y)
化簡(jiǎn)得x2+3y2=4(x≠±1).
故動(dòng)點(diǎn)P軌跡方程為x2+3y2=4(x≠±1)
(2)解:若存在點(diǎn)P使得△PAB與△PMN的面積相等,設(shè)點(diǎn)P的坐標(biāo)為(x0,y0)
則 .
因?yàn)閟in∠APB=sin∠MPN,
所以
所以 =
即(3﹣x0)2=|x02﹣1|,解得
因?yàn)閤02+3y02=4,所以
故存在點(diǎn)P使得△PAB與△PMN的面積相等,此時(shí)點(diǎn)P的坐標(biāo)為( )
【解析】(1)設(shè)點(diǎn)P的坐標(biāo)為(x,y),先分別求出直線AP與BP的斜率,再利用直線AP與BP的斜率之間的關(guān)系即可得到關(guān)系式,化簡(jiǎn)后即為動(dòng)點(diǎn)P的軌跡方程;(2)對(duì)于存在性問(wèn)題可先假設(shè)存在,由面積公式得: .根據(jù)角相等消去三角函數(shù)得比例式,最后得到關(guān)于點(diǎn)P的縱坐標(biāo)的方程,解之即得.
【考點(diǎn)精析】掌握點(diǎn)到直線的距離公式是解答本題的根本,需要知道點(diǎn)到直線的距離為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若0<a<b,且a+b=1,則下列各式中最大的是( )
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=1+x﹣ +…+ ,g(x)=1﹣x+ ﹣…﹣ ,設(shè)函數(shù)F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為( )
A.9
B.10
C.11
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(1)求證:直線DE⊥平面PAC.
(2)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量 ,則λ+μ的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)
(1)若函數(shù)是偶函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)且任意都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若,求在上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集為[0,4],求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點(diǎn),且 =5,則| |等于( )
A.2
B.4
C.6
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com