【題目】如圖,直三棱柱中,,,點(diǎn)在線段上.

(1)中點(diǎn),證明:平面

(2)當(dāng)長(zhǎng)是多少時(shí),三棱錐的體積是三棱柱的體積的.

【答案】(1)詳見(jiàn)解析(2)

【解析】

試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行的尋找與論證,往往需要結(jié)合平幾知識(shí),如本題利用三角形中位線性質(zhì)得線線平行(2)求三棱錐體積,關(guān)鍵是確定其高,而本題為直三棱柱,因此,而,所以體積比等于,解得

試題解析:(Ⅰ)證明:連結(jié)BC1,交B1C于E,連結(jié)ME.

因?yàn)?/span> 直三棱柱ABC-A1B1C1,M是AB中點(diǎn),所以側(cè)面BB1C1C為矩形,

ME為△ABC1的中位線,所以ME//AC1

因?yàn)镸E平面B1CM,AC1平面B1CM,所以AC1∥平面B1CM

(II)

設(shè),

,即

故當(dāng)時(shí),

三棱錐的體積是三棱柱的體積的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α、β是兩個(gè)平面,直線lα,lβ,若以lα;lβ;αβ中兩個(gè)為條件,另一個(gè)為結(jié)論構(gòu)成三個(gè)命題,則其中正確的命題有 (   )

A. ①③①②

B. ①③;②③

C. ①②②③

D. ①③①②;②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張?jiān)谔詫毦W(wǎng)上開(kāi)一家商店,他以10元每條的價(jià)格購(gòu)進(jìn)某品牌積壓圍巾2000條定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價(jià)格銷售,平均每日銷售量為10條;B商店以25元每條的價(jià)格銷售,平均每日銷售量為20條。假定這種圍巾的銷售量t是售價(jià)x)(的一次函數(shù),且各個(gè)商店間的售價(jià)、銷售量等方面不會(huì)互相影響

1試寫出圍巾銷售每日的毛利潤(rùn)y關(guān)于售價(jià)x)(的函數(shù)關(guān)系式不必寫出定義域,并幫助小張定價(jià),使得每日的毛利潤(rùn)最高每日的毛利潤(rùn)為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià);

2考慮到這批圍巾的管理、倉(cāng)儲(chǔ)等費(fèi)用為200元只要圍巾沒(méi)有售完,均須支付200元天,管理、倉(cāng)儲(chǔ)等費(fèi)用與圍巾數(shù)量無(wú)關(guān),試問(wèn)小張應(yīng)該如何定價(jià),使這批圍巾的總利潤(rùn)最高總利潤(rùn)總毛利潤(rùn)總管理、倉(cāng)儲(chǔ)等費(fèi)用

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開(kāi)辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;

(2)當(dāng)AE為何值時(shí),綠地面積y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面說(shuō)法正確的有

①演繹推理是由一般到特殊的推理;

②演繹推理得到的結(jié)論一定是正確的;

③演繹推理的一般模式是三段論;

④演繹推理的結(jié)論的正誤與大前提、小前提和推理形式有關(guān).

A. 1個(gè) B. 2個(gè)

C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).

(1)當(dāng)時(shí),求的極值;

(2)當(dāng)時(shí),若存在,使得恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司采用招考方式引進(jìn)人才,規(guī)定必須在,三個(gè)測(cè)試點(diǎn)中任意選取兩個(gè)進(jìn)行測(cè)試,若在這兩個(gè)測(cè)試點(diǎn)都測(cè)試合格,則可參加面試,否則不被錄用,已知考生在每測(cè)試個(gè)點(diǎn)測(cè)試結(jié)果互不影響,若考生小李和小王起前來(lái)參加招考,小李在測(cè)試點(diǎn)測(cè)試合格的概率分別為,小王在上述三個(gè)測(cè)試點(diǎn)測(cè)試合格的概率都是.

(1)問(wèn)小李選擇哪兩個(gè)測(cè)試點(diǎn)測(cè)試才能使得可以參加面試的可最大?請(qǐng)說(shuō)明理由;

(2)假設(shè)小李選測(cè)試點(diǎn)進(jìn)行測(cè)試,小王選擇測(cè)試點(diǎn)進(jìn)行測(cè)試,為兩人在各測(cè)試點(diǎn)測(cè)試合格的測(cè)試點(diǎn)個(gè)數(shù)之和,機(jī)變的分布列及數(shù)學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)在高考前各做了5次立定跳遠(yuǎn)測(cè)試,測(cè)得甲的成績(jī)?nèi)缦?/span>(單位:米)2.202.30,2.30,2.40,2.30,若甲、乙兩人的平均成績(jī)相同,乙的成績(jī)的方差是0.005,那么甲、乙兩人成績(jī)較穩(wěn)定的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱的底面是邊長(zhǎng)為2的正三角形,分別是的中點(diǎn)。

(1)證明:平面平面;

(2)若直線與平面所成的角為,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案