設(shè)倒圓錐形容器的軸截面為一個等邊三角形,在此容器內(nèi)注入水,并浸入半徑為的一個實(shí)心球,使球與水面恰好相切,試求取出球后水面高為多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面平面,且四邊形為矩形,四邊形為直角梯形,
,,,,.
(1)作出這個幾何體的三視圖(不要求寫作法).
(2)設(shè)是直線上的動點(diǎn),判斷并證明直線與直線的位置關(guān)系.
(3)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在體積為的正三棱錐中,長為,為棱的中點(diǎn),求
(1)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一個幾何體的三視圖如圖所示.
(1)求此幾何體的表面積;
(2)在如圖的正視圖中,如果點(diǎn)為所在線段中點(diǎn),點(diǎn)為頂點(diǎn),求在幾何體側(cè)面上從點(diǎn)到點(diǎn)的最短路徑的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,
(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數(shù)的解析式及最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,矩形ABCD中,AB=a,AD=b,過點(diǎn)D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對角線AC折起到△PAC的位置,使二面角PACB的大小為60°.過P作PH⊥EF于H.
(1)求證:PH⊥平面ABC;
(2)若a+b=2,求四面體PABC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖1 圖2
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐BDEG的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com