【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+ ,若g(x)有極大值點(diǎn)x1 , 求證: >a.
【答案】解:(Ⅰ)因?yàn)閒′(x)= ﹣2a,x>0, 因?yàn)楹瘮?shù)y=f(x)存在與直線2x﹣y=0垂直的切線,
所以f′(x)=﹣ 在(0,+∞)上有解,
即 ﹣2a=﹣ 在(0,+∞)上有解,
也即x= 在(0,+∞)上有解,
所以 >0,得a> ,
故所求實(shí)數(shù)a的取值范圍是( ,+∞);
(Ⅱ)證明:因?yàn)間(x)=f(x)+ x2= x2+lnx﹣2ax,
因?yàn)間′(x)= ,
①當(dāng)﹣1≤a≤1時(shí),g(x)單調(diào)遞增無極值點(diǎn),不符合題意,
②當(dāng)a>1或a<﹣1時(shí),令g′(x)=0,設(shè)x2﹣2ax+1=0的兩根為x1和x2 ,
因?yàn)閤1為函數(shù)g(x)的極大值點(diǎn),所以0<x1<x2 ,
又x1x2=1,x1+x2=2a>0,所以a>1,0<x1<1,
所以g′(x1)=x12﹣2ax1+ =0,則a= ,
要證明 >a,只需要證明x1lnx1+1>ax12 ,
因?yàn)閤1lnx1+1﹣ax12=x1lnx1﹣ +1=﹣ ﹣ x1+x1lnx1+1,0<x1<1,
令h(x)=﹣ x3﹣ x+xlnx+1,x∈(0,1),
所以h′(x)=﹣ x2﹣ +lnx,記P(x)=﹣ x2﹣ +lnx,x∈(0,1),
則P′(x)=﹣3x+ = ,
當(dāng)0<x< 時(shí),p′(x)>0,當(dāng) <x<1時(shí),p′(x)<0,
所以p(x)max=p( )=﹣1+ln <0,所以h′(x)<0,
所以h(x)在(0,1)上單調(diào)遞減,
所以h(x)>h(1)=0,原題得證
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為x= 在(0,+∞)上有解,求出a的范圍即可;(Ⅱ)求出g(x)的解析式,通過討論a的范圍,問題轉(zhuǎn)化為證明x1lnx1+1>ax12,令h(x)=﹣ ﹣ x+xlnx+1,x∈(0,1),根據(jù)函數(shù)的單調(diào)性證明即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本萬(wàn)元,每生產(chǎn)(百輛),需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)萬(wàn)元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由國(guó)家公安部提出,國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局發(fā)布的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)標(biāo)準(zhǔn)()》于年月日正式實(shí)施.車輛駕駛?cè)藛T酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經(jīng)過反復(fù)試驗(yàn),一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”見圖,
喝瓶啤酒的情況
且圖表示的函數(shù)模型,則該人喝一瓶啤酒后至少經(jīng)過多長(zhǎng)時(shí)間才可以駕車(時(shí)間以整小時(shí)計(jì)算)?(參考數(shù)據(jù):,)
( 。
駕駛行為類型 | 閥值 |
飲酒后駕車 | , |
醉酒后駕車 |
車輛駕車人員血液酒精含量閥值
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列a1,a2,…,an,…中的每一項(xiàng)都不為0.求證:{an}為等差數(shù)列的充要條件是:對(duì)任何n∈N+,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表: 甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌新款夏裝即將上市,為了對(duì)新款夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店 | 店 | 店 | 店 | |||
售價(jià)(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分別以三家連鎖店的平均售價(jià)與平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程;
(2)在大量投入市場(chǎng)后,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該新夏裝在銷售上獲得最大利潤(rùn),該款夏裝的單價(jià)應(yīng)定為多少元?(保留整數(shù))
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表: 甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機(jī)抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ii)小明擬到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對(duì)任意實(shí)數(shù)a≠0恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com