已知復(fù)數(shù)z1=3-i,|z2|=2,則|z1-z2|的最大值為
2+
10
2+
10
分析:設(shè)z2=2(cosθ+isinθ),則z1-z2=3-2cosθ-(1+2sinθ)i.利用復(fù)數(shù)模的計(jì)算公式可得|z1-z2|=
(3-2cosθ)2+(1+2sinθ)2
=
14-4
10
sin(θ+α)
,當(dāng)且僅當(dāng)sin(θ+α)=-1時(shí),則|z1-z2|取得最大值.
解答:解:設(shè)z2=2(cosθ+isinθ),則z1-z2=3-2cosθ-(1+2sinθ)i.
∴|z1-z2|=
(3-2cosθ)2+(1+2sinθ)2
=
14-4
10
sin(θ+α)

當(dāng)且僅當(dāng)sin(θ+α)=-1時(shí),則|z1-z2|取得最大值
14+4
10
=2+
10

故答案為2+
10
點(diǎn)評:熟練掌握復(fù)數(shù)的運(yùn)算法則和模的計(jì)算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=3-i,z2 是復(fù)數(shù)-1+2i 的共軛復(fù)數(shù),則復(fù)數(shù)
i
z1
-
z2
4
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=3-i,z2=2i-l,則復(fù)數(shù)
i
z1
-
.
z2
4
的虛部等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=3+i,z2=2-i,則z1z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=
3
+i,z1=
3
+i,
.
z2
.
=2,且z1•z22是虛部為負(fù)數(shù)的純虛數(shù),求復(fù)數(shù)z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=
3
+i
,|z2|=2,z1×
z
2
2
是虛部為正數(shù)的純虛數(shù).
(1)求z1×
z
2
2
的模;
(2)求復(fù)數(shù)z2

查看答案和解析>>

同步練習(xí)冊答案