已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為假命題、“p或q”為真命題的實數(shù)m的取值范圍.
解析試題分析:解:由題設(shè)知x1+x2=a,x1x2=-2,
∴|x1-x2|==.
a∈[1,2]時,的最小值為3,要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只需|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式Δ=4m2-12(m+)=4m2-12m-16>0,得m<-1或m>4,
綜上,要使“p且q”為假命題、“p或q”為真命題,只需p真q假或p假q真,即 或 解得實數(shù)m的取值范圍是.
考點:邏輯聯(lián)結(jié)詞
點評:邏輯聯(lián)結(jié)詞有三個:且、或和非。在且命題中,只有兩個命題都為真時,且命題才為真,而在或命題中,只要一個命題為真時,或命題就為真。
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲廠以x 千克/小時的速度運輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時可獲得利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,要用欄桿圍成一個面積為50平方米的長方形花園,其中有一面靠墻不需要欄桿,其中正面欄桿造價每米200元,兩個側(cè)面欄桿每米造價50元,設(shè)正面欄桿長度為米.
(1)將總造價y表示為關(guān)于的函數(shù);
(2)問花園如何設(shè)計,總造價最少?并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)證明函數(shù)的圖像關(guān)于點對稱;
(2)若,求;
(3)在(2)的條件下,若 ,為數(shù)列的前項和,若對一切都成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為奇函數(shù),為常數(shù),
(1)求的值;
(2)證明在區(qū)間上單調(diào)遞增;
(3)若,不等式恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
海安縣城有甲,乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動小時的收費為元,在乙家租一張球臺開展活動小時的收費為元.試求和;
(2)問:小張選擇哪家比較合算?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com