【題目】設(shè)一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上10,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是(

A.12.8 3.6 B.2.8 13.6 C.12.8 13.6 D.13.6 12.8

【答案】A

【解析】

試題分析:設(shè)該組數(shù)據(jù)為x1,x2,…,xn;則新數(shù)據(jù)為x1+10,x2+10,…,xn+10;從而分別求平均數(shù)與方差,比較即可.

解:設(shè)該組數(shù)據(jù)為x1,x2,…,xn;則新數(shù)據(jù)為x1+10,x2+10,…,xn+10;

==2.8,

==10+2.8=12.8,

S2=[(x12+(x22+…+(xn2],

S′2=[(x1+10﹣(+10))2+(x2+10﹣(+10))2+…+(xn+10﹣(+10))2],

=S2=3.6,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三棱柱的高為2,的中點(diǎn),的中點(diǎn)

(1)證明:平面;

(2)若三棱錐的體積為,求該正三棱柱的底面邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E: 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 離心率e= .過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1當(dāng)時(shí),探究函數(shù)的單調(diào)性;

2若關(guān)于的不等式上恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(axb)-x2-4x,曲線yf(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.

(Ⅰ)求a,b的值;

(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點(diǎn),點(diǎn)M,N分別為棱DD1 , A1D1的中點(diǎn).

(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+alnx在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+ x2﹣bx.
(1)求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)b的取值范圍;
(3)設(shè)x1 , x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥ ,求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足(1﹣q)Sn+qan=1,且q(q﹣1)≠0.
(1)求{an}的通項(xiàng)公式;
(2)若S3 , S9 , S6成等差數(shù)列,求證:a2 , a8 , a5成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案