【題目】設(shè)動(dòng)點(diǎn)P在棱長為1的正方體ABCD-A1B1C1D1的對(duì)角線BD1上,記=λ.當(dāng)∠APC為鈍角時(shí),λ的取值范圍是________.
【答案】(,1)
【解析】
本題主要考查了用空間向量求直線間的夾角,一元二次不等式的解法,意在考查考生的空間想象能力以及運(yùn)算求解能力.
以、、為單位正交基底,建立如圖所示的空間直角坐標(biāo)系D-xyz,則有A(1,0,0),B(1,1,0),C(0,1,0),D1(0,0,1),則=(1,1,-1),得=λ=(λ,λ,-λ),所以=+=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1),=+=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1),顯然∠APC不是平角,所以∠APC為鈍角等價(jià)于·<0,即-λ(1-λ)-λ(1-λ)+(λ-1)2<0,即(λ-1)(3λ-1)<0,解得<λ<1,因此λ的取值范圍是(,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
記x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元), 表示購機(jī)的同時(shí)購買的易損零件數(shù).
(Ⅰ)若=19,求y與x的函數(shù)解析式;
(Ⅱ)若要求“需更換的易損零件數(shù)不大于”的頻率不小于0.5,求的最小值;
(Ⅲ)假設(shè)這100臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買19個(gè)易損零件,或每臺(tái)都購買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺(tái)機(jī)器的同時(shí)應(yīng)購買19個(gè)還是20個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入n,x的值分別為4,2,則輸出v的值為 ( )
A. 9B. 18C. 25D. 50
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 交于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點(diǎn)是線段上的一動(dòng)點(diǎn),問點(diǎn)在什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一某班50名學(xué)生參加防疫知識(shí)競賽,將所有成績制作成頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
0.06 | ||
35 | 0.070 | |
6 | 0.12 | |
4 |
(1)求頻率分布表中的值;
(2)從成績在的學(xué)生中選出2人,請寫出所有不同的選法,并求選出2人的成績都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的最小值.
(Ⅱ)若在區(qū)間上有兩個(gè)極值點(diǎn),
(i)求實(shí)數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是常數(shù),,),函數(shù)的導(dǎo)函數(shù)為,且.
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,且分別為線段的中點(diǎn),沿把折起,使,得到如下的立體圖形.
(1)證明:平面平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且橢圓與圓的4個(gè)交點(diǎn)恰為一個(gè)正方形的4個(gè)頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)為橢圓的下頂點(diǎn), 為橢圓上與不重合的兩點(diǎn),若直線與直線的斜率之和為,試判斷是否存在定點(diǎn),使得直線恒過點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com