【題目】為了調查某校高二學生的身高是否與性別有關,隨機調查該校64名高二學生,得到2×2列聯表如表:
男生 | 女生 | 總計 | |
身高低于170cm | 8 | 24 | 32 |
身高不低于170cm | 26 | 6 | 32 |
總計 | 34 | 30 | 64 |
附:K2
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
由此得出的正確結論是( )
A.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別無關”
B.在犯錯誤的概率不超過0.01的前提下,認為“身高與性別有關”
C.有99.9%的把握認為“身高與性別無關”
D.有99.9%的把握認為“身高與性別有關”
科目:高中數學 來源: 題型:
【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據調查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了50名魔方愛好者進行調查,得到的情況如下表所示:
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 23 | 30 | |
女 | 11 | ||
總計 | 50 |
表(1)
并邀請其中20名男生參加盲擰三階魔方比賽,其完成情況如下表(2)所示.
成功完成時間(分鐘) | ||||
人數 | 10 | 4 | 4 | 2 |
表(2)
(Ⅰ)將表(1)補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關?
(Ⅱ)現從表(2)中成功完成時間在和這兩組內的6名男生中任意抽取2人對他們的盲擰情況進行視頻記錄,求2人成功完成時間恰好在同一組內的概率.
附參考公式及參考數據:,其中.
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為了對研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:
附:對于一組數據,其回歸直線的斜率的最小二乘估計值為;
本題參考數值:.
(1)若銷量y與單價x服從線性相關關系,求該回歸方程;
(2)在(1)的前提下,若該產品的成本是5元/件,問:產品該如何確定單價,可使工廠獲得最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的方程是: ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)設過原點的直線與曲線交于, 兩點,且,求直線的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了增強民眾防控病毒的意識,舉行了“預防新冠病毒知識競賽”網上答題,隨機抽取人,答題成績統計如圖所示.
(1)由直方圖可認為答題者的成績服從正態(tài)分布,其中,分別為答題者的平均成績和成績的方差,那么這名答題者成績超過分的人數估計有多少人?(同一組中的數據用該組的區(qū)間中點值作代表)
(2)如果成績超過分的民眾我們認為是“防御知識合格者”,用這名答題者的成績來估計全市的民眾,現從全市中隨機抽取人,“防御知識合格者”的人數為,求.(精確到)
附:①,;②,則,;③,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,它的一個頂點A與拋物線的焦點重合.
1求橢圓C的方程;
2是否存在直線l,使得直線l與橢圓C交于M,N兩點,且橢圓C的右焦點F恰為的垂心三條高所在直線的交點?若存在,求出直線l的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,.
(1)求平面與平面所成銳二面角的余弦值;
(2)點是線段上的動點,當直線與所成的角最小時,求線段的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com