已知是定義在R上的偶函數(shù),當(dāng)時,
(1)寫出的解析式;
(2)畫出函數(shù)的圖像;
(3)寫出上的值域。

解(1)設(shè)χ<0 則>0則f(-χ)=4χ-2

又∵f(-χ)=f(χ)  ∴f(χ)=4χ-2
       -4χ-2  χ≥0
∴f(χ)=               
      4χ-2   χ<0 
(2)略
(3)y= f(χ)在[-3、5]的值域為[-22、-2]

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知y=是二次函數(shù),且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間及值域..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域為R的函數(shù)是奇函數(shù).
(1)求a的值;(2)判斷的單調(diào)性(不需要寫出理由);
(3)若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)畫出函數(shù)f(x)在定義域內(nèi)的圖像
(2)用定義證明函數(shù)f(x)在(0,+∞)上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)已知函數(shù)
⑴ 判斷函數(shù)的單調(diào)性,并利用單調(diào)性定義證明;
⑵ 求函數(shù)的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)設(shè)定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(m)+f(m-1)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) . (1) 求函數(shù)的定義域;(2) 求證上是減函數(shù);(3) 求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知滿足不等式,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,則      

查看答案和解析>>

同步練習(xí)冊答案