(2012•茂名二模)如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別在邊CD,CB上,點E與點C,點D不重合,EF⊥AC,EF∩AC=O,沿EF將△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED
(1)求證:BD⊥平面POA
(2)設AO∩BD=H,當O為CH中點時,若點Q滿足
AQ
=
QP
,求直線OQ與平面PBD所成角的正弦值.
分析:(1)由菱形的性質(zhì)可得BD⊥AO,再利用面面垂直的性質(zhì)可得PO⊥平面ABFED,得到PO⊥BD,進而得到結(jié)論;
(2)通過建立空間直角坐標系,利用斜線的方向向量和平面的法向量的夾角即可得出.
解答:(1)證明:在菱形ABCD中,∵BD⊥AC,∴BD⊥AO,
∵EF⊥AC,∴PO⊥EF.
∵平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO?平面PEF,
∴PO⊥平面ABFED,
∵BD?平面ABFED,∴PO⊥BD,
∵AO∩PO=O,∴BD⊥平面POA.
(2)由(1)可知:AC⊥BD,
∵∠DAB=60°,BC=4,∴BH=2,CH=2
3

∵O為CH的中點,∴PO=
3

如圖,以O為坐標原點,建立空間直角坐標系O-xyz.則O(0,0,0),A(3
3
,0,0)
,
B(
3
,2,0)
,D(
3
,-2,0)
,P(0,0,
3
)

PB
=(
3
,2,-
3
)
BD
=(0,-4,0)

AQ
=
QP
,得Q為AP的中點.
Q(
3
3
2
,0,
3
2
)
.∴
OQ
=(
3
3
2
,0,
3
2
)

設平面PBD的法向量為
n
=(x,y,z)
,
n
PB
=0
n
BD
=0
3
x+2y-
3
z=0
-4y=0
,取x=1,得y=0,z=1.
n
=(1,0,1)

設直線OQ與平面PBD所成的角為θ.
sinθ=|cos<
OQ
n
>|
=
|
n
OQ
|
|
n
| |
OQ
|
=
|
3
3
2
+
3
2
|
(
3
3
2
)2+(
3
2
)2
=
2
5
5

因此直線OQ與平面PBD所成的角的正弦值為
2
5
5
點評:熟練掌握菱形的性質(zhì)、面面垂直的性質(zhì)、線面垂直的判定定理、通過建立空間直角坐標系利用斜線的方向向量和平面的法向量的夾角求線面角是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)(坐標系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),則曲線C上的點到直線x+y+2=0的距離的最大值為
3
2
2
+1
3
2
2
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)已知函數(shù)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(1)求函數(shù)f(x)的值域;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(C)=1,且b2=ac,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)已知全集U=R,則正確表示集合M={0,1,2}和N={x|x2+2x=0}關系的韋恩(Venn)圖是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)長方體的一個頂點上的三條棱長分別是3,4,x,且它的8個頂點都在同一球面上,這個球的表面積是125π,則x的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)下列三個不等式中,恒成立的個數(shù)有( 。
①x+
1
x
≥2(x≠0);②
c
a
c
b
(a>b>c>0);③
a+m
b+m
a
b
(a,b,m>0,a<b).

查看答案和解析>>

同步練習冊答案