【題目】在平行四邊形中,,,過點作的垂線,交的延長線于點,.連結,交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點,為的中點,且平面平面,求三棱錐的體積.
【答案】(1)見解析; (2).
【解析】
(1)先求得,,可得,結合,可得,,,可證明平面,利用面面垂直的判定定理可得平面平面;(2)由面面垂直的性質可得平面,取的中點為,連結,則,可證明平面,由此利用棱錐的體積公式可得三棱錐的體積.
(1)如題圖1,在中,,,所以.
在中,,所以.
所以.
如題圖2,,.又因為,所以,,,
所以平面,又因為平面,所以平面平面.
(2)解法一:因為平面平面,
平面平面,平面,,所以平面.
取的中點為,連結,則,所以平面.
即為三棱錐的高.
且.
因為,三棱錐的體積為.
解法二:因為平面平面,平面平面,平面,
,所以平面.
因為為的中點.
所以三棱錐的高等于.
因為為的中點,所以的面積是四邊形的面積的,
從而三棱錐的體積是四棱錐的體積的.
面,
所以三棱錐的體積為.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市收集并整理了該市2019年1月份至10月份各月最低氣溫與最高氣溫(單位:℃)的數(shù)據(jù),繪制了下面的折線圖.( )
已知該城市各月的最低氣溫與最高氣溫具有較好的線性關系,則根據(jù)折線圖,下列結論正確的是
A.最低氣溫與最高氣溫為正相關B.10月的最高氣溫不低于5月的最高氣溫
C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1月D.最低氣溫低于0 ℃的月份有4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線過點.
① 求實數(shù)的值;
② 設函數(shù),當時,試比較與的大。
(2)若函數(shù)有兩個極值點,(),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:-=1(a>0,b>0)與橢圓+=1的焦點重合,離心率互為倒數(shù),設F1、F2分別為雙曲線C的左、右焦點,P為右支上任意一點,則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產生0到9之間取整數(shù)的隨機數(shù),用0,1,2 沒有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個隨機數(shù)為一組, 代表射擊4次的結果,經隨機模擬產生了20組隨機數(shù):
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550
0371,6233,2616,8045,6011,3661,9597,7424,7610,4281
根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最大值為, 的圖像關于軸對稱.
(1)求實數(shù), 的值.
(2)設,則是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域為?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com