【題目】在一次考試中,某班級(jí)50名學(xué)生的成績統(tǒng)計(jì)如下表,規(guī)定75分以下為一般,大于等于75分小于85分為良好,85分及以上為優(yōu)秀.
分?jǐn)?shù) | 69 | 73 | 74 | 75 | 77 | 78 | 79 | 80 | 82 | 83 | 85 | 87 | 89 | 93 | 95 | 合計(jì) |
人數(shù) | 2 | 4 | 4 | 2 | 3 | 4 | 6 | 3 | 3 | 4 | 4 | 5 | 2 | 3 | 1 | 50 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差.為評(píng)判該份試卷質(zhì)量的好壞,從其中任取一人,記其成績?yōu)?/span>X,并根據(jù)以下不等式進(jìn)行評(píng)判:
①;
②;
③.
評(píng)判規(guī)則:若同時(shí)滿足上述三個(gè)不等式,則被評(píng)為優(yōu)秀試卷;若僅滿足其中兩個(gè)不等式,則被評(píng)為合格試卷;其他情況,則被評(píng)為不合格試卷.
(1)試判斷該份試卷被評(píng)為哪種等級(jí);
(2)按分層抽樣的方式從3個(gè)層次的學(xué)生中抽出10名學(xué)生,再從抽出的10名學(xué)生中隨機(jī)抽出4人進(jìn)行學(xué)習(xí)方法交流,用隨機(jī)變量表示4人中成績優(yōu)秀的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(1)該份試卷應(yīng)被評(píng)為合格試卷;
(2)見解析,1.2 .
【解析】
(1)根據(jù)頻數(shù)分布表,計(jì)算出,的值,由此判斷出“該份試卷為合格試卷”;
(2)利用超幾何分布分布列計(jì)算公式,計(jì)算出分布列,并求得數(shù)學(xué)期望.
解:(1),
,
,
因?yàn)榭忌煽儩M足兩個(gè)不等式,所以該份試卷應(yīng)被評(píng)為合格試卷;
(2)50人中成績一般、良好及優(yōu)秀的比例為,
所以所抽出的10人中,成績優(yōu)秀的有3人,所以的取值可能為0,1,2,3,
, ,
,,
所以隨機(jī)變量的分布列為:
0 | 1 | 2 | 3 | |
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為的左焦點(diǎn),點(diǎn)為直線上任意一點(diǎn),過點(diǎn)作的垂線交于兩點(diǎn),
(ⅰ)證明:平分線段(其中為坐標(biāo)原點(diǎn));
(ⅱ)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若點(diǎn)在直線上,且,求直線的斜率;
(2)若,求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受傳統(tǒng)觀念的影響,中國家庭教育過程中對(duì)子女教育的投入不遺余力,基礎(chǔ)教育消費(fèi)一直是中國家庭教育的重頭戲,升學(xué)壓力的逐漸增大,特別是對(duì)于升入重點(diǎn)學(xué)校的重視,導(dǎo)致很多家庭教育支出增長較快,下面是某機(jī)構(gòu)隨機(jī)抽樣調(diào)查某二線城市2012-2018年的家庭教育支出的折線圖.
(附:年份代碼1-7分別對(duì)應(yīng)的年份是2012-2018)
(1)從圖中的折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)求出相關(guān)系數(shù)r(精確到0.001),并指出是哪一層次的相關(guān)性?(相關(guān)系數(shù),相關(guān)性很強(qiáng);,相關(guān)性一般;,相關(guān)性較弱).
(2)建立y關(guān)于t的回歸方程;
(3)若2019年該地區(qū)家庭總支出為10萬元,預(yù)測(cè)家庭教育支出約為多少萬元?
附注:參考數(shù)據(jù):,,,,.
參考公式:,回歸方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種型號(hào)的電視機(jī)零配件,為了預(yù)測(cè)今年月份該型號(hào)電視機(jī)零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度月份至月份該型號(hào)電視機(jī)零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:
月份 | ||||||
銷售單價(jià)(元) | ||||||
銷售量(千件) |
(1)根據(jù)1至月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)電視機(jī)零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價(jià),才能使該月利潤達(dá)到最大(計(jì)算結(jié)果精確到)?
參考公式:回歸直線方程,其中.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物中的一種,即自己的屬相.現(xiàn)有印著十二生肖圖案的毛絨娃娃各一個(gè),小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這十二個(gè)毛絨娃娃中各隨機(jī)取一個(gè)(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每個(gè)國家對(duì)退休年齡都有不一樣的規(guī)定,從2018年開始,我國關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對(duì)“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:
年齡段(單位:歲) | ||||||
被調(diào)查的人數(shù) | ||||||
贊成的人數(shù) |
(1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為,求出表格中的值;
(2)若從年齡在的參與調(diào)查的市民中按照是否贊成“延遲退休”進(jìn)行分層抽樣,從中抽取10人參與某項(xiàng)調(diào)查,然后再從這10人中隨機(jī)抽取4人參加座談會(huì),記這4人中贊成“延遲退休”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,不等式的解集是.
(1)求的解析式;
(2)不等式組的正整數(shù)解只有一個(gè),求實(shí)數(shù)k取值范圍;
(3)若對(duì)于任意,不等式恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)、在拋物線上,且、、三點(diǎn)共線.若圓的直徑為.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與拋物線交于點(diǎn),,分別過、兩點(diǎn)作拋物線的切線,,證明直線,的交點(diǎn)在定直線上,并求出該直線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com