【題目】已知數(shù)列的前n項(xiàng)和為,且滿足,數(shù)列中,,對(duì)任意正整數(shù),.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在實(shí)數(shù),使得數(shù)列是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)及公比q的值,若不存在,請(qǐng)說明理由;
(3)求數(shù)列前n項(xiàng)和.
【答案】(1)
(2)存在,,
(3)()
【解析】
(1)根據(jù)與的關(guān)系即可求出;
(2)假設(shè)存在實(shí)數(shù),利用等比數(shù)列的定義列式,與題目條件,比較對(duì)應(yīng)項(xiàng)系數(shù)即可求出,即說明存在這樣的實(shí)數(shù);
(3)由(2)可以求出,所以根據(jù)分組求和法和分類討論法即可求出.
(1)因?yàn)?/span>,
當(dāng)時(shí),;
當(dāng)時(shí),.
故;
(2)假設(shè)存在實(shí)數(shù),使得數(shù)列是等比數(shù)列,數(shù)列中,,
對(duì)任意正整數(shù),.可得,且,
由假設(shè)可得,即,
則,可得,
可得存在實(shí)數(shù),使得數(shù)列是公比的等比數(shù)列;
(3)由(2)可得,則,
則前n項(xiàng)和
當(dāng)n為偶數(shù)時(shí),
當(dāng)n為奇數(shù)時(shí),
則().
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,分別為的中點(diǎn).在此幾何體中,給出下列結(jié)論,其中正確的結(jié)論是( )
A.平面平面B.直線平面
C.直線平面D.直線平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 是上一點(diǎn),且.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合的子集A中的每個(gè)元素均可表為兩個(gè)自然數(shù)(允許相同)的平方和,求集合A中元素個(gè)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求在上的最小值;
(2)若關(guān)于的不等式有且只有三個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了余弦定理后,老師布置了一個(gè)課外任務(wù),讓同學(xué)們自己制作一些直角三角形、銳角三角形或鈍角三角形的模型,現(xiàn)在李明和王強(qiáng)同學(xué)已經(jīng)有了兩根長(zhǎng)度分別為和的鐵絲.
(1)如果他們希望能夠制作一個(gè)直角三角形,那么他們需要的第三根鐵絲的長(zhǎng)度應(yīng)該是多少?
(2)如果他們希望能夠制作一個(gè)鈍角三角形,那么他們需要的第三根鐵絲的長(zhǎng)度應(yīng)該在什么范圍?制作一個(gè)銳角三角形呢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為,過橢圓的右焦點(diǎn)作斜率為的直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)垂直于的直線與軸交于點(diǎn),且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com