據(jù)統(tǒng)計(jì)某種汽車(chē)的最高車(chē)速為120千米∕時(shí),在勻速行駛時(shí)每小時(shí)的耗油量(升)與行駛速度(千米∕時(shí))之間有如下函數(shù)關(guān)系:。已知甲、乙兩地相距100千米。
(1)若汽車(chē)以40千米∕時(shí)的速度勻速行駛,則從甲地到乙地需耗油多少升?
(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

(1),(2)當(dāng)汽車(chē)以千米∕時(shí)的速度行駛時(shí),從甲地到乙地耗油最少,最少為

解析試題分析:(1)解實(shí)際問(wèn)題應(yīng)用題,需正確理解題目含義. 從甲地到乙地需耗油等于每小時(shí)的耗油量乘以行駛時(shí)間. 從甲地到乙地行駛了(小時(shí)),每小時(shí)的耗油量為,,所以共需耗油,(2)在(1)的基礎(chǔ)上,將從甲地到乙地耗油表示為速度的函數(shù)關(guān)系式:,利用導(dǎo)數(shù)求出其極小值,也是最小值.解題過(guò)程中需明確極值點(diǎn)是否在定義區(qū)間內(nèi).
試題解析:解:(1)當(dāng)時(shí),汽車(chē)從甲地到乙地行駛了(小時(shí)),
需耗油(升)。
所以汽車(chē)以40千米∕時(shí)的速度勻速行駛,從甲地到乙地需耗油升 …4分.
(2)當(dāng)汽車(chē)的行駛速度為千米∕時(shí)時(shí),從甲地到乙地需行駛小時(shí).
設(shè)耗油量為升,依題意,得
,.……7分
 .
,得 .
因?yàn)楫?dāng)時(shí),,是減函數(shù);當(dāng)時(shí),,是增函數(shù),所以當(dāng)時(shí),取得最小值.
所以當(dāng)汽車(chē)以千米∕時(shí)的速度行駛時(shí),從甲地到乙地耗油最少,
最少為升。                 12分
考點(diǎn):利用導(dǎo)數(shù)求實(shí)際問(wèn)題最值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)若對(duì)任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(2)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),,,
(1)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且函數(shù)的極小值為,求的值;
(2)若,且,
①求證:; ②求證:上存在極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù),關(guān)于x的不等式的解集為,其中m為非零常數(shù).設(shè).
(1)求a的值;
(2)如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a∈R).
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當(dāng)a≤0時(shí),求f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明對(duì)一切x∈(0,+∞),都有l(wèi)nx>成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)=x3ax2bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=
2a,f′(2)=-b,其中a,b∈R.
①求曲線yf(x)在點(diǎn)(1,f(1))處的切線方程;②設(shè)g(x)=f′(x)ex,求g(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案