.(本小題14分)橢圓的一個(gè)頂點(diǎn)為,離心率
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點(diǎn),且滿足,求直線的方程.
解:(1)依題意,有,解得                 …3分
∴橢圓方程為.                               …5分
(2)∵,
,且是線段的中點(diǎn),                   …7分
 消去并整理得,
.                               …9分
設(shè)、
,∴

                                …11分
,∴直線的斜率為
,得,
解得       (此時(shí)滿足判別式)             …13分
∴直線的方程為.                         …14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
函數(shù)定義在區(qū)間[a, b]上,設(shè)“”表示函數(shù)在集合D上的最小值,“”表示函數(shù)在集合D上的最大值.現(xiàn)設(shè),
,
若存在最小正整數(shù)k,使得對(duì)任意的成立,則稱函數(shù)
為區(qū)間上的“第k類壓縮函數(shù)”.

(Ⅰ) 若函數(shù),求的最大值,寫出的解析式;
(Ⅱ) 若,函數(shù)上的“第3類壓縮函數(shù)”,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.設(shè)是橢圓上的兩點(diǎn),點(diǎn)是線段的中點(diǎn),線段的垂直平分線與橢圓相交于兩點(diǎn).
(1)確定的取值范圍,并求直線的方程;
(2)試判斷是否存在這樣的,使得四點(diǎn)在同一個(gè)圓上?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓C:,稱圓心在原點(diǎn)O、半徑為的圓是橢圓C的“伴橢圓” ,若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(1)、求橢圓C的方程及其“伴橢圓”的方程;
(2)、若傾斜角為的直線與橢圓C只有一個(gè)公共點(diǎn),且與橢圓C的“伴橢圓”相交于M、N兩點(diǎn),求弦MN的長(zhǎng)。
(3)、若點(diǎn)P是橢圓C“伴橢圓”上一動(dòng)點(diǎn),過點(diǎn)P作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩個(gè)焦點(diǎn)為、,且,弦AB過點(diǎn),則△的周長(zhǎng)為__________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:的左、右焦點(diǎn)分別為F1 ,F2,若橢圓上總存在點(diǎn)P,使得點(diǎn)P在以F1,F2為直徑的圓上.
(1) 求橢圓離心率的取值范圍;
(2) 若AB是橢圓C的任意一條不垂直x軸的弦,M為弦的中點(diǎn),且滿足
(其中分別表示直線AB、OM的斜率,0為坐標(biāo)原點(diǎn)),求滿足題意的橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的短軸長(zhǎng)是(  )
A.B. 2C. 2D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線以橢圓長(zhǎng)軸的兩個(gè)端點(diǎn)為焦點(diǎn),其準(zhǔn)線過橢圓的焦點(diǎn),則雙曲線的離心率為(   )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)半徑為2的球放在桌面上,桌面上的一點(diǎn)的正上方有一個(gè)光源 與球相切,球在桌面上的投影是一個(gè)橢圓,則這個(gè)橢圓的離心率等于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案