【題目】已知函數(shù),(x>0).
(1)當(dāng)0<a<b,且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請(qǐng)說(shuō)明理由.
(3)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)?/span>[a,b]時(shí),值域?yàn)?/span>[ma,mb](m≠0),求m的取值范圍.
【答案】(1)證明見詳解;(2)不存在適合條件的實(shí)數(shù)a,b,證明見詳解;(3).
【解析】
(1)根據(jù)函數(shù)單調(diào)性,初步判斷與1的大小關(guān)系,根據(jù)f(a)=f(b)得到等量關(guān)系,用均值不等式進(jìn)行處理;
(2)對(duì)與1的大小關(guān)系進(jìn)行分類討論,尋找滿足題意的;
(3)對(duì)的取值進(jìn)行分類討論,利用函數(shù)的單調(diào)性,進(jìn)行求解.
(1)證明:∵x>0,∴
∴f(x)在(0,1)上為減函數(shù),在(1,+∞)上是增函數(shù).
由0<a<b,且f(a)=f(b),
可得 0<a<1<b和,
即.
∴2ab=a+b.
故,即ab>1.
(2)不存在滿足條件的實(shí)數(shù)a,b.
若存在滿足條件的實(shí)數(shù)a,b,使得函數(shù)y的定義域、值域都是[a,b],
則a>0,
①當(dāng)a,b∈(0,1)時(shí),在(0,1)上為減函數(shù).
故,即,解得a=b.
故此時(shí)不存在適合條件的實(shí)數(shù)a,b.
②當(dāng)a,b∈[1,+∞)時(shí),在(1,+∞)上是增函數(shù).
故,即
此時(shí)a,b是方程x2﹣x+1=0的根,此方程無(wú)實(shí)根.
故此時(shí)不存在適合條件的實(shí)數(shù)a,b.
③當(dāng)a∈(0,1),b∈[1,+∞)時(shí),
由于1∈[a,b],而f(1)=0[a,b],
故此時(shí)不存在適合條件的實(shí)數(shù)a,b.
綜上可知,不存在適合條件的實(shí)數(shù)a,b.
(3)若存在實(shí)數(shù)a,b(a<b),
使得函數(shù)y=f(x)的定義域?yàn)?/span>[a,b]時(shí),值域?yàn)?/span>[ma,mb].
則a>0,m>0.
①當(dāng)a,b∈(0,1)時(shí),由于f(x)在(0,1)上是減函數(shù),
故.
此時(shí)得a,b異號(hào),不符合題意,所以a,b不存在.
②當(dāng)a∈(0,1)或b∈[1,+∞)時(shí),
由( 2)知0在值域內(nèi),值域不可能是[ma,mb]所以a,b不存在.
故只有a,b∈[1,+∞).
∵在[1,+∞)上是增函數(shù),
∴,即
∴a,b是方程mx2﹣x+1=0的兩個(gè)根,
即關(guān)于x的方程mx2﹣x+1=0有兩個(gè)大于1的實(shí)根.
設(shè)這兩個(gè)根為x1,x2,則x1+x2,x1x2.
∴,即
解得.
故m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 (a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為,點(diǎn)A的坐標(biāo)為,且.
(I)求橢圓的方程;
(II)設(shè)直線l: 與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若 (O為原點(diǎn)) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點(diǎn)為的中點(diǎn).
()求證: 平面.
()求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解廣大學(xué)生家長(zhǎng)對(duì)校園食品安全的認(rèn)識(shí),某市食品安全檢測(cè)部門對(duì)該市家長(zhǎng)進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識(shí)問卷調(diào)查,每一位學(xué)生家長(zhǎng)僅有一次參加機(jī)會(huì),現(xiàn)對(duì)有效問卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).
(1)請(qǐng)利用正態(tài)分布的知識(shí)求;
(2)該市食品安全檢測(cè)部門為此次參加問卷調(diào)查的學(xué)生家長(zhǎng)制定如下獎(jiǎng)勵(lì)方案:
①得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi):
②每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
獲贈(zèng)的隨機(jī)話費(fèi)(單位:元) | ||
概率 |
市食品安全檢測(cè)部門預(yù)計(jì)參加此次活動(dòng)的家長(zhǎng)約5000人,請(qǐng)依據(jù)以上數(shù)據(jù)估計(jì)此次活動(dòng)可能贈(zèng)送出多少話費(fèi)?
附:①;②若;則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合,,分別從集合和中隨機(jī)取一個(gè)元素與.記“點(diǎn)落在直線上”為事件,若事件的概率最大,則的取值可能是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間.
(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線的方程.
(3)已知分別在,處取得極值,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時(shí),f(x)=﹣x﹣2,則( )
A.B.f(sin3)<f(cos3)
C.D.f(2020)>f(2019)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com