已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知,求的值;
(3)直線交橢圓兩不同點(diǎn),軸的射影分別為,,若點(diǎn)滿足,證明:點(diǎn)在橢圓上.

(1) ,;(2)-1;(3)詳見(jiàn)解析.

解析試題分析:(1)根據(jù)拋物線的焦點(diǎn)坐標(biāo)滿足圓的方程確定等量關(guān)系,求解拋物線方程;根據(jù)橢圓的焦點(diǎn)和右定點(diǎn)也在圓上,確定橢圓方程;(2)利用已知的向量關(guān)系式進(jìn)行坐標(biāo)轉(zhuǎn)化求出,然后通過(guò)直線與拋物線方程聯(lián)立,借助韋達(dá)定理進(jìn)行化簡(jiǎn)并求值;(3)借助向量問(wèn)題坐標(biāo)化和點(diǎn)在橢圓上,明確點(diǎn)S的坐標(biāo),進(jìn)而證明其在橢圓上.
試題解析:(1)由拋物線的焦點(diǎn)在圓上得:
∴拋物線 .                          2分
同理由橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在
上可解得:
得橢圓.                                            4分
(2)設(shè)直線的方程為,則
聯(lián)立方程組,消去得:
                           5分
得:
整理得:
.                8分
(3)設(shè),則
;① ;②
;③                                                11分
由①+②+③得
滿足橢圓的方程,命題得證.               13分
考點(diǎn):1.拋物線和橢圓的方程;(2)直線與拋物線的位置關(guān)系;(3)向量的坐標(biāo)運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

四邊形ABCD的四個(gè)頂點(diǎn)都在拋物線上,A,C關(guān)于軸對(duì)稱,BD平行于拋物線在點(diǎn)C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點(diǎn)A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,左焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與曲線交于不同的、兩點(diǎn),且線段的中點(diǎn)在圓 上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
(I)求橢圓的方程;
(II)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且三點(diǎn)共線.求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,設(shè)拋物線的焦點(diǎn)為,且其準(zhǔn)線與軸交于,以為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為P.

(1)當(dāng)時(shí),求橢圓的方程;
(2)是否存在實(shí)數(shù),使得的三條邊的邊長(zhǎng)是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓(a>b>0)拋物線,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:



4

1

2
4

2
(1)求的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過(guò)原點(diǎn)O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N.當(dāng)時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案