【題目】已知圓和點.
(1)過點向圓引切線,求切線的方程;
(2)求以點為圓心,且被直線截得的弦長為8的圓的方程;
(3)設(shè)為(2)中圓上任意一點,過點向圓引切線,切點為,試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請求出定點的坐標,并指出相應(yīng)的定值;若不存在,請說明理由.
【答案】(1)或;(2);(3)存在;定點時,定值為或定點時,定值為.
【解析】
(1)討論斜率是否存在:當斜率不存在時,易判斷為圓的切線;當斜率存在時,設(shè)出直線方程,由圓心到直線距離等于半徑,即可求得斜率,進而確定直線方程.
(2)由點到直線距離公式可先求得點到直線的距離,再根據(jù)所得弦長和垂徑定理,即可確定半徑,進而得圓的方程;
(3)假設(shè)存在定點,使得為定值,設(shè),,,根據(jù)切線長定理及兩點間距離公式表示出,代入并結(jié)合圓M的方程,化簡即可求得,進而代入整理的方程可得關(guān)于的一元二次方程,解方程即可確定的值,即可得定點坐標及的值.
(1)若過點的直線斜率不存在,直線方程為,為圓的切線;
當切線的斜率存在時,設(shè)直線方程為,
即,
∴圓心到切線的距離為,解得,
∴直線方程為
綜上切線的方程為或.
(2)點到直線的距離為,
∵圓被直線截得的弦長為8,∴,
∴圓的方程為.
(3)假設(shè)存在定點,使得為定值,設(shè),,
∵點在圓上,
∴,則
∵為圓的切線,
∴,∴,
,
∴
即
整理得
若使對任意,恒成立,則,
∴,代入得,
化簡整理得,解得或,
∴或
∴存在定點,此時為定值或定點,此時為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,大量的統(tǒng)計數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機選出人,并將這人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示:
(1)求的值;
(2)求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取人,再從這人中隨機抽取人進行問卷調(diào)查,求第2組中抽到人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于異面直線a,b,下列四個命題正確的有( )
A.過直線a有且僅有一個平面β,使b⊥β
B.過直線a有且僅有一個平面β,使b//β
C.在空間存在平面β,使a//β,b//β
D.在空間不存在平面β,使a⊥β,b⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形ABCD中,,如圖(1)所示.現(xiàn)將△ABC沿邊BC翻折至A'BC,記二面角A'—BC—D的大小為θ.
(1)當θ=90°時,如圖(2)所示,過點B作平面與A‘D垂直,分別交于點E,F,求點E到平面的距離;
(2)當時,如圖(3)所示,求二面角的正切值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分)選修4—4:坐標系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)共有員工10000人,下圖是通過隨機抽樣得到的該企業(yè)部分員工年收入(單位:萬元)頻率分布直方圖.
(1)根據(jù)頻率分布直方圖計算樣本的平均數(shù).并以此估算該企業(yè)全體員工中年收入不低于樣本平均數(shù)的人數(shù)(同一組中的數(shù)據(jù)以這數(shù)據(jù)所在區(qū)間中點的值作代表);
(2)若抽樣調(diào)查中收入在萬元員工有2人,求在收入在萬元的員工中任取3人,恰有2位員工收入在萬元的概率;
(3)若抽樣調(diào)查的樣本容量是400人,在這400人中:年收入在萬元的員工中具有大學(xué)及大學(xué)以上學(xué)歷的有,年收入在萬元的員工中不具有大學(xué)及大學(xué)以上學(xué)歷的有,將具有大學(xué)及大學(xué)以上學(xué)歷和不具有大學(xué)及大學(xué)以上學(xué)歷的員工人數(shù)填入下面的列聯(lián)表,并判斷能否有的把握認為具有大學(xué)及大學(xué)以上學(xué)歷和不具有大學(xué)及大學(xué)以上學(xué)歷的員工收入有差異?
具有大學(xué)及大學(xué)以上學(xué)歷 | 不具有大學(xué)及大學(xué)以上學(xué)歷 | 合計 | |
萬元員工 | |||
萬元員工 | |||
合計 |
附:;
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《最強大腦》是江蘇衛(wèi)視引進德國節(jié)目《SuperBrain》而推出的大型科學(xué)競技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對空間感知、照相式記憶進行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測試,120分以上才有機會入圍.某重點高校準備調(diào)查腦力測試成績是否與性別有關(guān),在該高校隨機抽取男、女學(xué)生各100名,然后對這200名學(xué)生進行腦力測試.規(guī)定:分數(shù)不小于120分為“入圍學(xué)生”,分數(shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認為腦力測試后是否為“入圍學(xué)生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計 |
男生 | 24 | ||
女生 | 80 | ||
總計 |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機抽取11名學(xué)生,然后再從這11名學(xué)生中抽取3名參加某期《最強大腦》,設(shè)抽到的3名學(xué)生中女生的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,為確保“停課不停學(xué)”,各校精心組織了線上教學(xué)活動.開學(xué)后,某校采用分層抽樣的方法從三個年級的學(xué)生中抽取一個容量為150的樣本進行關(guān)于線上教學(xué)實施情況的問卷調(diào)查.已知該校高一年級共有學(xué)生660人,抽取的樣本中高二年級有50人,高三年級有45人.下表是根據(jù)抽樣調(diào)查情況得到的高二學(xué)生日睡眠時間(單位:h)的頻率分布表.
分組 | 頻數(shù) | 頻率 |
5 | 0.10 | |
8 | 0.16 | |
x | 0.14 | |
12 | y | |
10 | 0.20 | |
z | ||
合計 | 50 | 1 |
(1)求該校學(xué)生總數(shù);
(2)求頻率分布表中實數(shù)x,y,z的值;
(3)已知日睡眠時間在區(qū)間[6,6.5)的5名高二學(xué)生中,有2名女生,3名男生,若從中任選2人進行面談,則選中的2人恰好為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上無零點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com