【題目】給出下列4個命題
①“若,則”的否命題是“若,則”;
②若命題,則為真命題;
③“平面向量夾角為銳角,則”的逆命題為真命題;
④“函數(shù)有零點”是“函數(shù)在上為減函數(shù)”的充要條件.
其中正確的命題個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
⑴ 求關(guān)于的函數(shù)關(guān)系式;
⑵ 已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為16元/米,設(shè)花壇的面積與裝飾總費用之比為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,互相垂直的兩條公路AP、AQ旁有一矩形花園ABCD,現(xiàn)欲將其擴建成一個更大的三角形花園AMN,要求點M在射線AP上,點N在射線AQ上,且直線MN過點C,其中AB=36米,AD=20米.記三角形花園AMN的面積為S. (Ⅰ)問:DN取何值時,S取得最小值,并求出最小值;
(Ⅱ)若S不超過1764平方米,求DN長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程(x﹣1)2+y2=1,P是橢圓 =1上一點,過P作圓的兩條切線,切點為A,B,則 的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)當(dāng)時, ,若當(dāng)時, 恒成立,求的最小值;
(2)若的圖像關(guān)于對稱,且時, ,求當(dāng)時, 的解析式;
(3)當(dāng)時, .若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù) 在其定義域上是奇函數(shù),求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是△BCD所在平面外一點,M、N為△ABC和△ACD重心,BD=6;
(1)求MN的長;
(2)若A、C的位置發(fā)生變化,MN的位置和長度會改變嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)若在點處的切線斜率為,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:在時, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com