如圖,在四棱錐中,,,為正三角形,且平面平面

(1)證明:;
(2)求二面角的余弦值.
(1)證明見解析;(2)

試題分析:(1)取的中點(diǎn),然后利用矩形及正三角形的性質(zhì)可證明,從而可證明結(jié)果;(2)可考慮分別以,軸,軸,軸建立空間直線坐標(biāo)系,通過求兩個(gè)平面的法向量的夾角來求二面角的余弦值.或考慮通過過點(diǎn)作,然后證明為所求二面角的一個(gè)平面角,再在中進(jìn)行計(jì)算.
(1)證明:取的中點(diǎn),連接,
為正三角形,∴
又∵在四邊形中,
,∴,且,
∴四邊形ABCO為平行四邊形,∴ ,
,∴
(2)(法一):由(1)知,且平面平面平面,所以分別以,軸,軸,軸建立如圖,

所示的直角坐標(biāo)系,并設(shè),則,,
,,,
,,,         .
設(shè)平面,平面的法向量分別為,

∴分別取平面,平面的一個(gè)法向量
,
∴二面角的余弦值為
(法一):由(1)知,且平面平面,∴平面
點(diǎn)作,垂足為,連接,則,于是為所求二面角的一個(gè)平面角,
設(shè),則,,,
∴二面角的余弦值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,的中點(diǎn),的中點(diǎn).
(1)求證:平面平面
(2)求證:平面;
(3)設(shè)為正方體棱上一點(diǎn),給出滿足條件的點(diǎn)的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在弧AB上,且OM∥AC.

(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是平行四邊形,平面,,的中點(diǎn).

(1)求證:平面
(2)若以為坐標(biāo)原點(diǎn),射線、分別是軸、軸、軸的正半軸,建立空間直角坐標(biāo)系,已經(jīng)計(jì)算得是平面的法向量,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為.點(diǎn)分別是棱上共面的四點(diǎn),平面平面,平面.
證明:
,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC邊上存在點(diǎn)Q,使得PQ⊥QD,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是(  )
A.α⊥β,且m?αB.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

兩直線垂直,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是一正方體的表面展開圖,B、N、Q都是所在棱的中點(diǎn),則在原正方體中,①AB與CD相交;②MN∥PQ;③AB∥PE;④MN與CD異面;⑤MN∥平面PQC.
其中真命題的是________(填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案