如圖,在四棱錐
中,
,
,
為正三角形,且平面
平面
.
(1)證明:
;
(2)求二面角
的余弦值.
(1)證明見解析;(2)
.
試題分析:(1)取
的中點(diǎn)
,然后利用矩形及正三角形的性質(zhì)可證明
,
,從而可證明結(jié)果;(2)可考慮分別以
,
為
軸,
軸,
軸建立空間直線坐標(biāo)系,通過求兩個(gè)平面的法向量的夾角來求二面角
的余弦值.或考慮通過過
點(diǎn)作
,然后證明
為所求二面角的一個(gè)平面角,再在
中進(jìn)行計(jì)算.
(1)證明:取
的中點(diǎn)
,連接
,
∵
為正三角形,∴
.
又∵在四邊形
中,
,∴
,且
,
∴四邊形ABCO為平行四邊形,∴
,
∴
,∴
.
(2)(法一):由(1)知
,且平面
平面
∴
平面
,所以分別以
,
為
軸,
軸,
軸建立如圖,
所示的直角坐標(biāo)系,并設(shè)
,則
,
,
∴
,
,
,
,
,
∴
,
,
,
.
設(shè)平面
,平面
的法向量分別為
,
則
∴
∴分別取平面
,平面
的一個(gè)法向量
,
∴
,
∴二面角
的余弦值為
.
(法一):由(1)知
,且平面
平面
,∴
平面
,
過
點(diǎn)作
,垂足為
,連接
,則
,于是
為所求二面角的一個(gè)平面角,
設(shè)
,則
,
,
,
∴
∴二面角
的余弦值為
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在正方體
中,
,
為
的中點(diǎn),
為
的中點(diǎn).
(1)求證:平面
平面
;
(2)求證:
平面
;
(3)設(shè)
為正方體
棱上一點(diǎn),給出滿足條件
的點(diǎn)
的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
中,底面
是平行四邊形,
,
平面
,
,
,
是
的中點(diǎn).
(1)求證:
平面
;
(2)若以
為坐標(biāo)原點(diǎn),射線
、
、
分別是
軸、
軸、
軸的正半軸,建立空間直角坐標(biāo)系,已經(jīng)計(jì)算得
是平面
的法向量,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
的底面邊長(zhǎng)為8的正方形,四條側(cè)棱長(zhǎng)均為
.點(diǎn)
分別是棱
上共面的四點(diǎn),平面
平面
,
平面
.
證明:
若
,求四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC邊上存在點(diǎn)Q,使得PQ⊥QD,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( )
A.α⊥β,且m?α | B.m∥n,且n⊥β |
C.α⊥β,且m∥α | D.m⊥n,且n∥β |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖是一正方體的表面展開圖,B、N、Q都是所在棱的中點(diǎn),則在原正方體中,①AB與CD相交;②MN∥PQ;③AB∥PE;④MN與CD異面;⑤MN∥平面PQC.
其中真命題的是________(填序號(hào)).
查看答案和解析>>