(本小題滿(mǎn)分12分)
已知函數(shù)對(duì)于任意, 總有,
并且當(dāng),
⑴求證上的單調(diào)遞增函數(shù)
⑵若,求解不等式

(1)見(jiàn)解析;(2)。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司為了實(shí)現(xiàn)1000萬(wàn)元利潤(rùn)的目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)銷(xiāo)售人員的獎(jiǎng)勵(lì)方案:在銷(xiāo)售利潤(rùn)達(dá)到10萬(wàn)元時(shí),按銷(xiāo)售利潤(rùn)進(jìn)行獎(jiǎng)勵(lì),且獎(jiǎng)金(單位:萬(wàn)元)隨銷(xiāo)售利潤(rùn)(單位:萬(wàn)元)的增加而增加,但獎(jiǎng)金總數(shù)不超過(guò)5萬(wàn)元,同時(shí)獎(jiǎng)金不能超過(guò)利潤(rùn)的%.現(xiàn)有三個(gè)獎(jiǎng)勵(lì)模型:,分析與推導(dǎo)哪個(gè)函數(shù)模型能符合該公司的要求?并給予證明.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上是減函數(shù),求函數(shù)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)設(shè)函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域;
(3)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/6/wbrq62.png" style="vertical-align:middle;" />的單調(diào)函數(shù)圖關(guān)于點(diǎn)對(duì)稱(chēng),當(dāng)時(shí),.
(1)求的解析式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
已知集合,請(qǐng)畫(huà)出從集合到集合的所有函數(shù)關(guān)系,并寫(xiě)出每種函數(shù)關(guān)系中的定義域及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在 上是增函數(shù).
(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;
(2)證明:函數(shù)(常數(shù))在上是減函數(shù);
(3)設(shè)常數(shù),求函數(shù)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分10分)
已知函數(shù)為常數(shù),)的圖象過(guò)點(diǎn).
(1)求實(shí)數(shù)的值;
(2)若函數(shù),試判斷函數(shù)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知y=是二次函數(shù),且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間及值域..

查看答案和解析>>

同步練習(xí)冊(cè)答案