【題目】甲、乙、丙三人用擂臺賽形式進行訓(xùn)練.每局兩人單打比賽,另一人當(dāng)裁判.每一局的輸方去當(dāng)下一局的裁判,而由原來的裁判向勝者挑戰(zhàn).半天訓(xùn)練結(jié)束時,發(fā)現(xiàn)甲共打局,乙共打局,而丙共當(dāng)裁判局.那么整個比賽的第局的輸方( )
A. 必是甲 B. 必是乙 C. 必是丙 D. 不能確定
【答案】A
【解析】分析:根據(jù)丙共當(dāng)裁判8局,因此,甲乙打了8局;甲共打了12局,因此,丙共打了4局,利用乙共打局,因此乙丙打了13局,因此共打了25局,那么甲當(dāng)裁判13局,乙當(dāng)裁判4局,丙當(dāng)裁判8局,由于實行擂臺賽形式,因此,每局都必須換裁判;即,某人不可能連續(xù)做裁判,因此,甲做裁判的局次只能是:1、3、5、……、23、25;由于第11局只能是甲做裁判,顯然,第10局的輸方,只能是甲.
詳解:根據(jù)題意,知丙共當(dāng)裁判8局,所以甲乙之間共有8局比賽,
又甲共打了12局,乙共打了21局,
所以甲和丙打了4局,乙和丙打了13局,
三人之間總共打了(8+4+13)=25局,
考查甲,總共打了12局,當(dāng)了13次裁判,
所以他輸了12次.
所以當(dāng)n是偶數(shù)時,第n局比賽的輸方為甲,
從而整個比賽的第10局的輸方必是甲.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
【答案】(1);.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開后化簡得直角坐標(biāo)方程.(II)求得兩點的坐標(biāo), 設(shè)點,代入向量,利用三角函數(shù)的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為(為參數(shù)).
直線的直角坐標(biāo)方程為.
(Ⅱ)由直線的方程可得點,點.
設(shè)點,則 .
.
由(Ⅰ)知,則 .
因為,所以.
【題型】解答題
【結(jié)束】
23
【題目】選修4-5:不等式選講
已知函數(shù), .
(Ⅰ)若對于任意, 都滿足,求的值;
(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:,
(1)當(dāng)時,恒有,求的取值范圍;
(2)①當(dāng)時,恰有成立,求的值.
②當(dāng)時,恒有,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的一個上界.已知函數(shù),.
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;
(3)若函數(shù)在上是以5為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A﹣BC﹣C,有如下四個結(jié)論:
①AC⊥BD;②△ABC是等邊三角形;
③AB與CD所成的角90°;④二面角A﹣BC﹣D的平面角正切值是;
其中正確結(jié)論是 .(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點.
(Ⅰ)求證:BE//平面ADE ;
(Ⅱ)求平面AEF與平面BEC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),與是的子集,若,則稱為一個“理想配集”,那么符合此條件的“理想配集”的個數(shù)是________.(規(guī)定與是兩個不同的“理想配集”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個三角形,當(dāng)該三角形面積最小時,切點為P(如圖),雙曲線C1: 過點P且離心率為 .
(1)求C1的方程;
(2)若橢圓C2過點P且與C1有相同的焦點,直線l過C2的右焦點且與C2交于A,B兩點,若以線段AB為直徑的圓過點P,求l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com