已知直線l∶y=x+k經(jīng)過橢圓C∶的右焦點F2,且與橢圓C交于A、B兩點,若以弦AB為直徑的圓經(jīng)過橢圓的左焦點F1,試求橢圓C的方程.
科目:高中數(shù)學(xué) 來源:福建東山二中2007屆高三年數(shù)學(xué)模擬卷(5) 題型:044
已知橢圓,它的離心率為,直線l∶y=x+2與以原點為圓心,以橢圓C1的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)橢圓C1的左焦點為F,左準(zhǔn)線為l1,動直線l2垂直l1于點P,線段PF的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(Ⅲ)設(shè)C2與x軸交于點Q,不同的兩點R,S在C2上,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計必修二數(shù)學(xué)蘇教版 蘇教版 題型:044
已知直線l∶y=k(x-2)+4與曲線C∶y=有兩個不同的交點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試浙江卷文數(shù) 題型:044
已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l∶y=x-2于M、N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知橢圓C1:的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com