【題目】已知向量 =(cosα,﹣1), =(2,sinα),其中 ,且 .
(1)求cos2α的值;
(2)若sin(α﹣β)= ,且 ,求角β.
【答案】
(1)解:∵向量 =(cosα,﹣1), =(2,sinα),其中 ,且 .
∴ =2cosα﹣sinα=0,
∴sin2α+cos2α=5cos2α=1,∴cos2α= ,
∴cos2α=2cos2α﹣1=﹣ .
(2)解:∵cos2α= , ,∴cosα= ,sinα= = ,
∵sin(α﹣β)= ,且 ,∴sinαcosβ﹣cosαsinβ= ,
∴2cosβ﹣sinβ= ,∴sinβ=2cos ,∴sin2β+cos2β=5cos2β﹣2 ﹣ =0,解得cosβ= 或cosβ=﹣ (舍),
∵ ,∴β=
【解析】1、由向量垂直的坐標(biāo)表示可求得cos2α= 再根據(jù)二倍角公式得到結(jié)果。
2、根據(jù)同角三角函數(shù)的基本關(guān)系可得sinα的值,再由兩角和差的正弦公式得到sinβ=2cos β 的關(guān)系,代入sin2β+cos2β=1解得cosβ=,再由 β的范圍可得 β=。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)量積判斷兩個平面向量的垂直關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)已知 ,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10;
(ii)求a7 .
(Ⅱ)2017年5月,北京召開“一帶一路”國際合作高峰論壇.組委會將甲、乙、丙、丁、戊五名志愿者分配到翻譯、導(dǎo)游、禮儀、司機(jī)四個不同的崗位,每個崗位至少有一人參加,且五人均能勝任這四個崗位.
(i)若每人不準(zhǔn)兼職,則不同的分配方案有幾種?
(ii)若甲乙被抽調(diào)去別的地方,剩下三人要求每人必兼兩職,則不同的分配方案有幾種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若函數(shù)g(x)=f(x)﹣m有三個不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x﹣ .
(Ⅰ)求函數(shù)f(x)的對稱軸方程;
(Ⅱ)將函數(shù)f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移 個單位,得到函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a=2,c=4,且g(B)=0,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂隊(duì)參加一戶外音樂節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊(duì)的互動指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂隊(duì)的互動指數(shù)為2a,求觀眾與樂隊(duì)的互動指數(shù)之和X的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義某種運(yùn)算S=ab,運(yùn)算原理如圖所示,則式子[(2tan )lg ]+[lne( )﹣1]的值為( )
A.4
B.8
C.10
D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點(diǎn)個數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1 , a3 , a7成等比數(shù)列,且a2n=2an﹣1,等比數(shù)列{bn}滿足bn+bn+1= .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與
圓O:x2+y2=4交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.
(1)若 ,求CD的長;
(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com