【題目】函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點(diǎn) ,函數(shù)y=bx(b>0且b≠1)的圖象經(jīng)過點(diǎn) ,則下列關(guān)系式中正確的是( )
A.a2>b2
B.2a>2b
C.
D.(a >b )
【答案】C
【解析】解:∵函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點(diǎn) ,
∴l(xiāng)oga 2 =1,
∴a= .
由于函數(shù)y=bx(b>0且b≠1)的圖象經(jīng)過點(diǎn)(1,2 ),故有b1=2 ,即 b=2 .
故有 b>a>0,
∴ ,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的相關(guān)知識,掌握0<a<1時:在定義域上是單調(diào)減函數(shù);a>1時:在定義域上是單調(diào)增函數(shù),以及對對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的理解,了解過定點(diǎn)(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數(shù);0>a>1時在(0,+∞)上是減函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面內(nèi)有三個向量 , , ,其中 與 的夾角為30°, 與 的夾角為90°,且| |=2,| |=2,| |=2 ,若 =λ +μ ,(λ,μ∈R)則( )
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣3x﹣10<0},B={x|m+1≤x≤2m﹣1}.
(1)當(dāng)m=3時,求集合(UA)∩B;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC=2. (Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD⊥平面B1C1D;
(Ⅱ)在AA1上是否存在一點(diǎn)D,使得二面角B1﹣CD﹣C1的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={a|一次函數(shù)y=(4a﹣1)x+b在R上是增函數(shù)},集合B= .
(1)求集合A,B;
(2)設(shè)集合 ,求函數(shù)f(x)=x﹣ 在A∩C上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=1,在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)E,記“△AEB的最大邊是AB”為事件M,則P(M)等于( )
A.2﹣
B. ﹣1
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com