【題目】在三棱錐ABCD中,BCD是邊長(zhǎng)為的等邊三角形,,二面角ABCD的大小為θ,且,則三棱錐ABCD體積的最大值為(

A.B.C.D.

【答案】B

【解析】

設(shè)ABx,ACy,由余弦定理及基本不等式求出xy的最大值為3,過AAO⊥平面BCD,∠AEO為二面角ABCD的平面角,求出AO的最大值,進(jìn)而求出三棱錐ABCD體積的最大值.

解:設(shè)ABxACy,,

由余弦定理得:BC2x2+y22xycosx2+y2xyxy,當(dāng)且僅當(dāng)xy時(shí)取等號(hào),

BC,所以xy≤3

AAO⊥平面BCD平面,則,

AEBC,連接OE,,平面,平面,則,

∴∠AEO為二面角ABCD的平面角,大小為θ,

,所以AE,

所以AOAEsinθ

,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,第24屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).

(ⅰ)問男、女學(xué)生各選取多少人?

(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會(huì)及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè),若對(duì)任意,有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,DE,F分別是邊,,中點(diǎn),下列說法正確的是(

A.

B.

C.,則的投影向量

D.若點(diǎn)P是線段上的動(dòng)點(diǎn),且滿足,則的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù),且滿足,當(dāng)時(shí), ,當(dāng)時(shí), 的最大值為.

(1)求實(shí)數(shù)的值;

(2)函數(shù),若對(duì)任意的,總存在,使不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽(yáng)馬中,側(cè)棱底面,且,過棱的中點(diǎn),作于點(diǎn),連接

)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫

出結(jié)論);若不是,說明理由;

)若面與面所成二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn), 與原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得直線的直角坐標(biāo)方程為,

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標(biāo)與直角坐標(biāo)的互化公式可得

可得曲線C的極坐標(biāo)方程.

(2)由(1)不妨設(shè)M(),,(),

,

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標(biāo)方程為,

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標(biāo)方程為

.

(2)由(1)不妨設(shè)M(),,(),

,

,

當(dāng) 時(shí), ,

所以△MON面積的最大值為.

型】解答
結(jié)束】
23

【題目】已知函數(shù)的定義域?yàn)?/span>;

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù), 滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生課外閱讀時(shí)間,從中隨機(jī)抽取了50名學(xué)生,收集了他們201810月課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為5組:[10,12),[12,14),[1416),[1618),[18,20],得到如圖所示的頻率分布直方圖.

(Ⅰ)試估計(jì)該校所有學(xué)生中,201810月課外閱讀時(shí)間不小于16小時(shí)的學(xué)生人數(shù);

(Ⅱ)已知這50名學(xué)生中恰有2名女生的課外閱讀時(shí)間在[18,20],現(xiàn)從課外閱讀時(shí)間在[18,20]的樣本對(duì)應(yīng)的學(xué)生中隨機(jī)抽取2人,求至少抽到1名女生的概率;

(Ⅲ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試估計(jì)該校學(xué)生201810月課外閱讀時(shí)間的平均數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案