【題目】已知A(2,0),B(0,2),,O為坐標(biāo)原點(diǎn).
(1),求sin 2θ的值;
(2)若,且θ∈(-π,0),求與的夾角.
【答案】(1);(2)
【解析】
分析:(1) 先根據(jù)向量數(shù)量積得sin θ+cos θ值,再平方得結(jié)果,(2)先根據(jù)向量的模得cos θ,即得C點(diǎn)坐標(biāo),再根據(jù)向量夾角公式求結(jié)果.
詳解:(1)∵=(cos θ,sinθ)-(2,0)=(cos θ-2,sin θ),
=(cos θ,sin θ)-(0,2)=(cos θ,sin θ-2),
=cos θ(cos θ-2)+sin θ(sin θ-2)=cos2θ-2cos θ+sin2θ-2sin θ=1-2(sin θ+cos θ)=-
∴sin θ+cos θ=,
∴1+2sin θcos θ=,
∴sin 2θ=-1=-.
(2)∵=(2,0),=(cos θ,sin θ),
∴+=(2+cos θ,sin θ),
∵|+|=,所以4+4cos θ+cos2θ+sin2θ=7,
∴4cos θ=2,即cos θ=.
∵-π<θ<0,∴θ=-,
又∵=(0,2),=,
∴cos〈,〉=,∴〈,〉=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程是ρ=asinθ,直線l的參數(shù)方程是 (t為參數(shù))
(1)若a=2,直線l與x軸的交點(diǎn)是M,N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)直線l被圓C截得的弦長(zhǎng)等于圓C的半徑的 倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠計(jì)劃出售一種產(chǎn)品,經(jīng)銷人員并不是根據(jù)生產(chǎn)成本來(lái)確定這種產(chǎn)品的價(jià)格,而是通過(guò)對(duì)經(jīng)營(yíng)產(chǎn)品的零售商對(duì)于不同的價(jià)格情況下他們會(huì)進(jìn)多少貨進(jìn)行調(diào)查,通過(guò)調(diào)查確定了關(guān)系式P=-750x+15000,其中P為零售商進(jìn)貨的數(shù)量(單位:件),x為零售商支付的每件產(chǎn)品價(jià)格(單位:元).現(xiàn)估計(jì)生產(chǎn)這種產(chǎn)品每件的材料和勞動(dòng)生產(chǎn)費(fèi)用為4元,并且工廠生產(chǎn)這種產(chǎn)品的總固定成本為7000元(固定成本是除材料和勞動(dòng)費(fèi)用以外的其他費(fèi)用),為獲得最大利潤(rùn),工廠應(yīng)對(duì)零售商每件收取多少元?并求此時(shí)的最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D為棱AC的中點(diǎn),側(cè)面A1ACC1為邊長(zhǎng)為2的菱形,AC⊥CB,BC=1.
(1)證明:AC1⊥平面A1BC;
(2)求二面角B﹣A1C﹣B1的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ ,g(x)=2ln(x+1)+e﹣x .
(1)x∈(﹣1,+∞)時(shí),證明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為p2= ,定點(diǎn)A(0,﹣ ),F(xiàn)1 , F2是圓錐曲線C的左、右焦點(diǎn),直線l經(jīng)過(guò)點(diǎn)F1且平行于直線AF2 .
(1)求圓錐曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓錐曲線C交于M,N兩點(diǎn),求|F1M||F1N|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)當(dāng)=-1時(shí),求的單調(diào)區(qū)間及值域;
(2)若在()上為增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)當(dāng)時(shí),判斷在的單調(diào)性,并用定義證明;
(2)若對(duì)恒成立,求的取值范圍;
(3)討論的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,b>0,且 的最小值為t.
(1)求實(shí)數(shù)t的值;
(2)解關(guān)于x的不等式:|2x+1|+|2x﹣1|<t.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com