【題目】某市隨機抽取部分企業(yè)調(diào)查年上繳稅收情況{單位萬元,將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100]樣本數(shù)據(jù)分組為[0,20),[20,40)[40,60)[60,80),[80,100)
(1)求直方圖中x的值;
(2)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若共抽取企業(yè)1200個,試估計有多少企業(yè)可以申請政策優(yōu)惠;
(3)從企業(yè)中任選4個,這4個企業(yè)年上繳稅收少于20萬元的個數(shù)記為X,求X的分布列和數(shù)學期望(以直方圖中的頻率作為概率)
【答案】
(1)解:由頻率分布直方圖得:
(x+0.025+0.0065+0.003+0.003)×20=1,
解得x=0.0125.
(2)由頻率分布直方圖得年上繳稅收不少于60萬元的企業(yè)所占頻率為(0.003+0.003)×20=0.12,
∵年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,共抽取企業(yè)1200個,
∴估計有:1200×0.12=144個企業(yè)可以申請政策優(yōu)惠.
(3)企業(yè)年上繳稅收少于20萬元的頻率p=0.0125×20=0.25,
從企業(yè)中任選4個,這4個企業(yè)年上繳稅收少于20萬元的個數(shù)記為X,
則X~B(4, ),
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ,
P(X=4)= = ,
∴X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
E(X)= =1.
【解析】(1)由頻率直方圖所有面積為1可得x的值;(2)由頻率分布直方圖可求出年上繳稅收不少于60萬元的企業(yè)所占頻率為0.12,可估計出有144個企業(yè)可以申請優(yōu)惠;(3)企業(yè)年上繳稅收少于20萬元的頻率為0.25,任選四個企業(yè)年上繳稅收少于20萬元可能取值為0,1,2,3,4,算出概率,列出分布列,算出期望 .
科目:高中數(shù)學 來源: 題型:
【題目】有一塊以點O為圓心,半徑為2百米的圓形草坪,草坪內(nèi)距離O點 百米的D點有一用于灌溉的水籠頭,現(xiàn)準備過點D修一條筆直小路交草坪圓周于A,B兩點,為了方便居民散步,同時修建小路OA,OB,其中小路的寬度忽略不計.
(1)若要使修建的小路的費用最省,試求小路的最短長度;
(2)若要在△ABO區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科技公司生產(chǎn)一種手機加密芯片,其質(zhì)量按測試指標劃分為:指標大于或等于70為合格品,小于70為次品.現(xiàn)隨機抽取這種芯片共120件進行檢測,檢測結(jié)果統(tǒng)計如表:
測試指標 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
芯片數(shù)量(件) | 8 | 22 | 45 | 37 | 8 |
已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機變量ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面上,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,點E、F為射線PL上的兩點,則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線G:y2=2px(p>0)焦點F的直線l與拋物線G交于M、N兩點(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準線相切的圓的標準方程為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y= 與y=ln(1﹣x)的定義域分別為M、N,則M∪N=( 。
A.(1,2]
B.[1,2]
C.(﹣∞,1]∪(2,+∞)
D.(﹣∞,1)∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點,過點(4,0)作垂直于x軸的直線交拋物線于A,B兩點,△ABF的周長為18.
(1)求拋物線的方程;
(2)過拋物線上的定點 作兩條關(guān)于直線y=p對稱的直線分別交拋物線于C,D兩點,連接CD,判斷直線CD的斜率是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,圓C的極坐標方程為:ρ2=4ρ(cosθ+sinθ)﹣6.若以極點O為原點,極軸所在直線為x軸建立平面直角坐標系.
(Ⅰ)求圓C的參數(shù)方程;
(Ⅱ)在直角坐標系中,點P(x,y)是圓C上動點,試求x+y的最大值,并求出此時點P的直角坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com