【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AD∥BC,CD⊥BC,AD=2,AB=BC=3,PA=4,M為AD的中點,N為PC上一點,且PC=3PN.
(1)求證:MN∥平面PAB;
(2)求點M到平面PAN的距離.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)作NH∥BC交PB于點H,連接AH,得四邊形AMNH為平行四邊形,所以MN∥AH,所以MN∥平面PAB;(2)由等體積法得VM-PAC=VP-AMC,即4h=×4,所以h=。
試題解析:
(1)在平面PBC內(nèi)作NH∥BC交PB于點H,連接AH,
在△PBC中,NH∥BC,且NH=BC=1,AM=AD=1.
又AD∥BC,∴NH∥AM且NH=AM,
∴四邊形AMNH為平行四邊形,∴MN∥AH,
又AH平面PAB,MN平面PAB,
∴MN∥平面PAB.
(2)連接AC,MC,PM,平面PAN即為平面PAC,設(shè)點M到平面PAC的距離為h.
由題意可得CD=2,AC=2,
∴S△PAC=PA·AC=4,
∴S△AMC=AM·CD=,
由VM-PAC=VP-AMC,得S△PAC·h=S△AMC·PA,
即4h=×4,∴h=,
∴點M到平面PAN的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin 2x-cos2x.
(1)求f(x)的周期和最小值;
(2)將函數(shù)f(x)的圖像上每一點的橫坐標伸長到原來的兩倍(縱坐標不變),再把所得圖像上的所有點向上平移個單位,得到函數(shù)g(x)的圖像,當時,求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在極坐標系和直角坐標系中,極點與直角坐標系的原點重合,極軸與軸的非負半軸重合,曲線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標方程和曲線的普通方程;
(2)判斷曲線與曲線的位置關(guān)系,若兩曲線相交,求出兩交點間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預(yù)約成為了當前最熱門的就診方式,這解決了看病期間病人插隊以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的位市民對網(wǎng)上預(yù)約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.
(Ⅰ)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(Ⅱ)若按分層抽樣的方法從年齡在以內(nèi)及以內(nèi)的市民中隨機抽取5人,再從這5人中隨機抽取2人進行調(diào)研,求抽取的2人中,至多1人年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)的年平均濃度不得超過3S微克/立方米, 的24小時平均濃度不得超過75微克/立方米.某市環(huán)保局隨機抽取了一居民區(qū)2016年20天的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如圖表:
組別 | 濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)將這20天的測量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(。┣髨D中的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計總體的思想,從的年平均度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(Ⅱ)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)的24小時平均濃度符合環(huán)境空氣質(zhì)量標準的天數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若為的極值點,求的值;
(Ⅱ)若在單調(diào)遞增,求的取值范圍.
(Ⅲ)當時,方程有實數(shù)根,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)當時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinωxcosωx-cos2ωx+ (ω>0),經(jīng)化簡后利用“五點法”畫其在某一周期內(nèi)的圖象時,列表并填入的部分數(shù)據(jù)如下表:
x | ① |
| |||
f(x) | 0 | 1 | 0 | -1 | 0 |
(1)請直接寫出①處應(yīng)填的值,并求函數(shù)f(x)在區(qū)間上的值域;
(2)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com