計(jì)算由曲線,直線x+y=3以及兩坐標(biāo)軸所圍成的圖形的面積S.

 

解析試題分析:解:如圖,由與直線x+y=3在點(diǎn)(1,2)相交,      2分
直線x+y=3與x軸交于點(diǎn)(3,0)      4分
所以,所求圍成的圖形的面積 ,其中被積函數(shù)f(x)    8分
  13分
所以,所求圍成的圖形的面積為      14分
考點(diǎn):定積分
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)微積分基本定理和圖像的交點(diǎn)來(lái)得到定積分的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若關(guān)于的方程在區(qū)間上有唯一實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),b∈Z),曲線在點(diǎn)(2,)處的切線方程為=3.
(1)求的解析式;
(2)證明:曲線=上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)是,處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最
小值,據(jù)此判斷的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中
(1)若函數(shù)有極值,求的值;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ) 若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

文科(本小題滿分14分)設(shè)函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對(duì)所有的都成立,求實(shí)數(shù)m的取值范圍。)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù) 
(1)當(dāng)時(shí),求證:;
(2)在區(qū)間恒成立,求實(shí)數(shù)的范圍。
(3)當(dāng)時(shí),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案