精英家教網 > 高中數學 > 題目詳情

如圖,在四棱錐中,底面為直角梯形,且,,側面底面. 若.

(Ⅰ)求證:平面;
(Ⅱ)側棱上是否存在點,使得平面?若存在,指出點 的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角的余弦值.

(1) 對于線面垂直的證明主要是根據線面垂直的判定定理,先通過線線垂直來得到證明。(2)

解析試題分析:解法一:
(Ⅰ)因為 ,所以.
又因為側面底面,且側面底面,所以底面.而底面,所以.     2分
在底面中,因為,
所以 , 所以.
又因為, 所以平面.            4分

(Ⅱ)在上存在中點,使得平面
證明如下:設的中點是, 連結,,,則,且. 由已知,所以. 又,所以,且,
所以四邊形為平行四邊形,所以.
因為平面,平面,
所以平面.           8分
(Ⅲ)設中點,連結,

.又因為平面平面
所以 平面.過,
連結,則,所以
所以是二面角的平面角.
,則, .在中,由相似三角形可得:,所以.所以 ,.即二面角的余弦值為.                 14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知平面是正三角形,且.

(1)設是線段的中點,求證:∥平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(理科)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3) 若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在四棱錐中,平面ABCD,底面ABCD是菱形,,.

(1)求證:平面PAC
(2)若,求PBAC所成角的余弦值;
(3)若PA=,求證:平面PBC⊥平面PDC

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB, PC的中點

(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;    
(3)若ÐPDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,邊長為4的正方形與正三角形所在的平面相互垂直,且、
分別為、中點.

(1)求證: ;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 點E、F分別是棱PB、邊CD的中點.(1)求證:AB⊥面PAD; (2)求證:EF∥面PAD

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.

(Ⅰ) 證明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)在直角梯形PBCD中,,A為PD的中點,如下左圖。將沿AB折到的位置,使,點E在SD上,且,如下圖。

(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.

查看答案和解析>>

同步練習冊答案