【題目】已知是拋物線上的一點(diǎn),為拋物線的焦點(diǎn),定點(diǎn),則的外接圓的面積為_____________.
【答案】
【解析】
代入P的坐標(biāo),由拋物線方程可得p,求得焦點(diǎn)坐標(biāo),由兩點(diǎn)距離公式可得MP,MF,PF,再由余弦定理可得cos∠MPF,由同角平方關(guān)系可得sin∠MPF,由正弦定理可得△MPF的外接圓的半徑,進(jìn)而得到所求圓的面積.
點(diǎn)P(4,4)是拋物線C:y2=2px上的一點(diǎn),
可得16=8p,
解得p=2,
即拋物線的方程為y2=4x,
由F(1,0),M(﹣1,4),P(4,4),可得
MP=5,PF=5,MF=2,
cos∠MPF,
則sin∠MPF,
設(shè)△MPF的外接圓的半徑為R,
則2R,
解得R,
可得△MPF的外接圓的面積為π.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,且過點(diǎn),橢圓的離心率為,點(diǎn)為拋物線與橢圓的一個(gè)公共點(diǎn),且.
(1)求橢圓的方程;
(2)過橢圓內(nèi)一點(diǎn)的直線的斜率為,且與橢圓交于兩點(diǎn),設(shè)直線,(為坐標(biāo)原點(diǎn))的斜率分別為,,若對任意,存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為2。
(1)求橢圓C的方程;
(2)橢圓C上是否存在一點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求點(diǎn)P的坐標(biāo)與直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 為正三角形,平面平面, , , .
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,請確定點(diǎn)的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為,已知點(diǎn)為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足.過弦的中點(diǎn)作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生參加4門學(xué)科的學(xué)業(yè)水平測試,每門得等級的概率都是,該學(xué)生各學(xué)科等級成績彼此獨(dú)立.規(guī)定:有一門學(xué)科獲等級加1分,有兩門學(xué)科獲等級加2分,有三門學(xué)科獲等級加3分,四門學(xué)科全獲等級則加5分,記表示該生的加分?jǐn)?shù), 表示該生獲等級的學(xué)科門數(shù)與未獲等級學(xué)科門數(shù)的差的絕對值.
(1)求的數(shù)學(xué)期望;
(2)求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在原點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間及最大值;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海關(guān)對同時(shí)從三個(gè)不同地區(qū)進(jìn)口的某種商品進(jìn)行抽樣檢測,從各地區(qū)進(jìn)口此種商品的數(shù)量(單位:件)如表所示,工作人員用分層抽樣的方法從這些商品中共抽取7件樣品進(jìn)行檢測.
地區(qū) | |||
數(shù)量 | 200 | 50 | 100 |
(1)求這7件樣品中來自各地區(qū)樣品的數(shù)量;
(2)若在這7件樣品中隨機(jī)抽取2件送往甲機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件商品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā)后,乙從乘纜車到,在處停留后,再從勻速步行到.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路長為,經(jīng)測量,,.
(1)求索道的長;
(2)為使兩位游客在處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)該控制在什么范圍內(nèi)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com