【題目】已知函數(shù).
(1)當時,求函數(shù)在上的最小值;
(2)若,求證:.
【答案】(1)(2)證明見解析
【解析】
(1)由得,對其求導,解對應的不等式,判斷單調(diào)性,即可得出最值;
(2)先對函數(shù)求導,得到,根據(jù),判斷函數(shù)的單調(diào)性,求出最小值,再由導數(shù)的方法研究最小值的范圍,即可證明結(jié)論成立.
(1)當時,由,得,
當時,,在上單調(diào)遞減;
當時,,在上單調(diào)遞增,∴.
(2)由題意,函數(shù)的定義域為,,
令,,則,設(shè),則,
易知在上單調(diào)遞增,
∵,∴,,所以存在唯一的,使,
當時,單調(diào)遞減,當時,,單調(diào)遞增,
又∵,,
∴當時,,即在上無零點,
∴存在唯一的,使,即,
∵,∴,則.
當時,,即,單調(diào)遞減;
當時,,即,單調(diào)遞增.
∴,.
令,則在上單調(diào)遞減,
∵∴,又∵∴,從而.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個不同的極值點,記作,,且,證明:(為自然對數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的零點;
(2)當時,求證:在區(qū)間上單調(diào)遞減;
(3)若對任意的正實數(shù),總存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的正方形的中心為為圓上的點,,,,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,,,使得重合,得到一個四棱錐.當該四棱錐的側(cè)面積是底面積的2倍時,該四棱錐的外接球的表面積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是橢圓:上的兩點,線段的中點在直線上.
(1)當直線的斜率存在時,求實數(shù)的取值范圍;
(2)設(shè)是橢圓的左焦點,若橢圓上存在一點,使,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=2,AD=1.將矩形沿對角線BD折起,使A移到點P,P在平面BCD上的投影O恰好落在CD邊上.
(1)證明:DP⊥平面BCP;
(2)求點O到平面PBD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年8月8日是我國第十個全民健身日,其主題是:新時代全民健身動起來。某市為了解全民健身情況,隨機從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計值;
(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計該小區(qū)年齡不超過80歲的成年人人數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩品牌計劃入駐某商場,該商場批準兩個品牌先進場試銷天。兩品牌提供的返利方案如下:甲品牌無固定返利,賣出件以內(nèi)(含件)的產(chǎn)品,每件產(chǎn)品返利元,超出件的部分每件返利元;乙品牌每天固定返利元,且每賣出一件產(chǎn)品再返利元。經(jīng)統(tǒng)計,兩家品牌在試銷期間的銷售件數(shù)的莖葉圖如下:
(Ⅰ)現(xiàn)從乙品牌試銷的天中隨機抽取天,求這天的銷售量中至少有一天低于的概率.
(Ⅱ)若將頻率視作概率,回答以下問題:
①記甲品牌的日返利額為(單位:元),求的分布列和數(shù)學期望;
②商場擬在甲、乙兩品牌中選擇一個長期銷售,如果僅從日返利額的角度考慮,請利用所學的統(tǒng)計學知識為商場作出選擇,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com