【題目】如圖,半徑為4m的水輪繞著圓心O逆時(shí)針做勻速圓周運(yùn)動(dòng),每分鐘轉(zhuǎn)動(dòng)4圈,水輪圓心O距離水面2m,如果當(dāng)水輪上點(diǎn)P從離開(kāi)水面的時(shí)刻(P0)開(kāi)始計(jì)算時(shí)間.

(1)將點(diǎn)P距離水面的高度y(m)與時(shí)間t(s)滿(mǎn)足的函數(shù)關(guān)系;
(2)求點(diǎn)P第一次到達(dá)最高點(diǎn)需要的時(shí)間.

【答案】
(1)解:以O(shè)為原點(diǎn)建立如圖所示的直角坐標(biāo)系.

由于水輪繞著圓心O做勻速圓周運(yùn)動(dòng),可設(shè)點(diǎn)P到水面的距離y(m)與時(shí)間t(s)滿(mǎn)足函數(shù)關(guān)系

∵水輪每分鐘旋轉(zhuǎn)4圈,

∵水輪半徑為4 m,

∴A=4.

當(dāng)t=0時(shí),y=0.


(2)解:由于最高點(diǎn)距離水面的距離為6,

∴t=5+15k(k∈Z).

∴當(dāng)k=0時(shí),即t=5(s)時(shí),點(diǎn)P第一次達(dá)到最高點(diǎn).


【解析】(1)設(shè)點(diǎn)P到水面的距離y(m)與時(shí)間t(s)滿(mǎn)足函數(shù)關(guān)系 ,利用周期求得ω,當(dāng)t=0時(shí),y=0,進(jìn)而求得φ的值,則函數(shù)的表達(dá)式可得.(2)根據(jù)正弦函數(shù)的圖象和性質(zhì)可得t=5+15k(k∈Z)即當(dāng)k=0時(shí),即t=5(s)時(shí),點(diǎn)P第一次達(dá)到最高點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2cos(x+ )cos(x﹣ ).
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)α∈(0,π),f( )= ,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), . 

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,則四個(gè)數(shù)的大小關(guān)系是(
A.a<c<b<d
B.c<d<a<b
C.b<d<c<a
D.d<b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積= (弦×矢+矢2).弧田,由圓弧和其所對(duì)弦所圍成.公式中“弦”指圓弧對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為 π,弦長(zhǎng)等于9米的弧田.按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中 , 為自然對(duì)數(shù)的底數(shù).

(Ⅰ)若在區(qū)間內(nèi)具有相同的單調(diào)性,求實(shí)數(shù)的取值范圍;

(Ⅱ)若,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)﹣b(ω>0,0<φ<π)的圖象兩相鄰對(duì)稱(chēng)軸之間的距離是 ,若將f(x)的圖象先向右平移 個(gè)單位,再向上平移 個(gè)單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的對(duì)稱(chēng)軸及單調(diào)區(qū)間;
(3)若對(duì)任意x∈[0, ],f2(x)﹣(2+m)f(x)+2+m≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1 500,2 000)(元)月收入段應(yīng)抽出( )人.

A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)內(nèi),某知名連接店分店開(kāi)張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)的有效展開(kāi),參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該分店經(jīng)理對(duì)開(kāi)業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì), 表示開(kāi)業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過(guò)進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線(xiàn)性相關(guān)關(guān)系.

(1)如從這7天中隨便機(jī)抽取兩天,求至少有1天參加抽獎(jiǎng)人數(shù)超過(guò)10天的概率;

(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線(xiàn)性回歸方程,并估計(jì)若該活動(dòng)持續(xù)10天,共有多少名顧客參加抽獎(jiǎng).

參考公式: , .

查看答案和解析>>

同步練習(xí)冊(cè)答案