【題目】已知函數(shù),其中常數(shù).
(1)令,將函數(shù)的圖像向左平移個單位,再向上平移1個單位,得到函數(shù),求函數(shù)的解析式;
(2)若在上單調遞增,求的取值范圍;
(3)在(1)的條件下的函數(shù)的圖像,區(qū)間且滿足:在上至少含有30個零點,在所有滿足上述條件的中,求的最小值.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)正弦函數(shù)平移“左加右減、上加下減”的法則即可求得;
(2)利用范圍可求得的范圍,根據(jù)單調性可得不等式組,解不等式組求得;由可求得,兩個范圍取交集得到最終結果;
(3)令可求得零點,進而得到相鄰零點之間的距離;若最小,知均為零點,此時在恰有個零點,從而得到在至少有一個零點;根據(jù)相鄰零點之間距離即可得到滿足的條件,進而求得所求的最小值.
(1)
,即
(2) 當時,
,,解得:,
又
即的取值范圍為
(3)令得:
或,
解得:或,
相鄰兩個零點之間的距離為或
若最小,則均為的零點,此時在區(qū)間,,…,分別恰有個零點
在區(qū)間恰有個零點 至少有一個零點
,即
檢驗可知,在恰有個零點,滿足題意
的最小值為
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的解析式;
(2)試判斷的單調性,并用定義法證明;
(3)若存在,使得不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,), ().
(1)如果是關于的不等式的解,求實數(shù)的取值范圍;
(2)判斷在和的單調性,并說明理由;
(3)證明:函數(shù)存在零點q,使得成立的充要條件是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】省環(huán)保廳對、、三個城市同時進行了多天的空氣質量監(jiān)測,測得三個城市空氣質量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據(jù)中隨機抽取一個,恰好抽到記錄城市空氣質量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進行后續(xù)分析,求在城中應抽取的數(shù)據(jù)的個數(shù);
(2)已知, ,求在城中空氣質量為優(yōu)的天數(shù)大于空氣質量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結論中正確的個數(shù)是( )
①正三棱錐的頂點在底面的射影到底面各頂點的距離相等;
②有兩個側面是矩形的棱柱是直棱柱;
③兩個底畫平行且相似的多面體是棱臺;
④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.
A.0B.1C.5D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示是一個正三棱臺,而且下底面邊長為2,上底面邊長和側棱長都為1.O與分別是下底面與上底面的中心.
(1)求棱臺的斜高;
(2)求棱臺的高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解該校多媒體教學普及情況,根據(jù)年齡按分層抽樣的方式調查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學情況的人數(shù)分布如下表:
(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認為以40歲為分界點對是否經(jīng)常使用多媒體教學有差異?
附:,.
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機抽取2人,求這2人中至少有1人年齡在30-39歲的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得與重合,連結,如圖2.
(1)證明圖2中的四點共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com