【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時,某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

2)求該地上班族的人均通勤時間的表達(dá)式;并求的最小值.

【答案】1;(2分鐘.

【解析】

1)解不等式即可;(2)分兩種情況求出分段函數(shù)的表達(dá)式,再求各段上的最小值,最后得出在整個定義域上最小值.

1)由已知當(dāng)時,不符合題意;當(dāng)時,由不等式組解之得,所以當(dāng)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間.

2)當(dāng)時,

當(dāng)時,,所以,易知當(dāng)時,函數(shù)單調(diào)遞減,此時;當(dāng),函數(shù)上單調(diào)遞減、在上單調(diào)遞增,此時,綜上可得,當(dāng)上班族的成員自駕時,地上班族的人均通勤時間有最小值分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π),其圖象最低點的縱坐標(biāo)是-,相鄰的兩個對稱中心是(,0)和(,0).:

(1)f(x)的解析式;

(2)f(x)的值域;

(3)f(x)圖象的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,恒成立,求的取值范圍;

2)若,是否存在實數(shù),使得,都成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某國際性會議紀(jì)念章的一特許專營店銷售紀(jì)念章,每枚進(jìn)價為5元,同時每銷售一枚這種紀(jì)念章還需向該會議的組織委員會交特許經(jīng)營管理費2元,預(yù)計這種紀(jì)念章以每枚20元的價格銷售時,該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn),每枚紀(jì)念章的銷售價格在每枚20元的基礎(chǔ)上,每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價格為元(每枚的銷售價格應(yīng)為正整數(shù)).

1)寫出該特許專營店一年內(nèi)銷售這種紀(jì)念章所獲得的利潤(元)與每枚紀(jì)念章的銷售價格的函數(shù)關(guān)系式;

2)當(dāng)每枚紀(jì)念章銷售價格為多少元時,該特許專營店一年內(nèi)利潤(元)最大,并求出這個最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,作出函數(shù)的圖象;

2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上有最小值8,若存在求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題中,正確的命題是:______.

1是奇函數(shù),則的值為0;

2)若,則、、);

3)設(shè)集合,,則;

4)若單調(diào)遞增,則的取值集合為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在區(qū)間,使在區(qū)間上恒成立,則稱區(qū)間是函數(shù)公共鄰域.設(shè)函數(shù)的反函數(shù)為,函數(shù)的圖像與函數(shù)的圖像關(guān)于點對稱.

1)求函數(shù)的解析式;

2)若,求函數(shù)的定義域;

3)是否存在實數(shù),使得區(qū)間公共鄰域,若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無限精細(xì)的結(jié)構(gòu)。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個黑色三角形內(nèi)去掉小三角形則當(dāng)時,該黑色三角形內(nèi)共去掉( )個小三角形

A. 81 B. 121 C. 364 D. 1093

查看答案和解析>>

同步練習(xí)冊答案