用一個平面去截一個幾何體,如果截面是三角形,則這個幾何體可能是___________.
三棱錐、三棱柱、三棱臺
用平行于底面的平面去截三棱柱,截面是三角形,同樣去截三棱錐,三棱臺所得截面均為三角形.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


                                                      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、、兩兩異面,空間與、,均相交的直線有多少條?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,EF分別是AB,PB的中點.

(I)求證:EFCD
(II)求DB與平面DEF所成角的正弦值;
(III)在平面PAD內(nèi)是否存在一點G,使G在平面PCB上的射影為△PCB的外心,若存在,試確定點G的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果直線l,m與平面α、β、γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有(    )
A.α⊥γ且l⊥mB.α⊥γ且m∥β
C.m∥β且l⊥mD.α∥β且α⊥γ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

右圖幾何體是由下邊的哪一個平面圖形旋轉而形成的(   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在四棱錐P-ABCD中,底面ABCD是正方形,側棱底面ABCD,PD=DC,EPC的中點,作PBF
(1)  證明:平面EDB;
(2)  證明:平面EFD
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 如圖所示,空間四邊形ABCD中,E、F、G分別在AB、BC、CD上,且滿足AE∶EB=CF∶FB=2∶1,CG∶GD="   "

3∶1,過E、F、G的平面交AD于H,連接EH.
(1)求AH∶HD;
(2)求證:EH、FG、BD三線共點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題




(1)求證:平面
(2)求二面角的大小
(3)求直線AB與平面所成線面角的正弦值

查看答案和解析>>

同步練習冊答案