如圖,在正方體中,、分別為,中點(diǎn)。
(1)求異面直線與所成角的大小;
(2)求證:平面。
(1);(2)見試題解析
解析試題分析:(1)把異面直線通過平移到一個(gè)平面內(nèi),即可求異面直線所成角。(2)由線面垂直的判定定理得,要證明平面,只需證明垂直于平面內(nèi)的兩條相交直線,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/42/9/1gu1u3.png" style="vertical-align:middle;" />,,得,又平面,且,所以平面
試題解析:(1)解: 連結(jié)。如圖所示:
、分別為,中點(diǎn)。
異面直線與所成角即為。(2分)
在等腰直角中
故異面直線與所成角的大小為。(4分)
(2)證明:在正方形中
(6分)
又 平面 (8分)
考點(diǎn):1、異面直線所成角的求法;2、線面垂直的判定
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知側(cè)棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
點(diǎn)F為棱BB1的中點(diǎn),點(diǎn)M為線段AC1的中點(diǎn).
(1)求證: MF∥平面ABCD
(2)求證:平面AFC1⊥平面ACC1A1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐的底面為菱形,面,且,,分別是的中點(diǎn).
(1)求證:∥平面;
(2)過作一平面交棱于點(diǎn),若二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,⊥底面,四邊形是直角梯形,⊥,∥,,.
(1)求證:平面⊥平面;
(2)求點(diǎn)C到平面的距離;
(3)求PC與平面PAD所成的角的正弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com