已知橢圓的中心為坐標原點O,焦點在x軸上,過橢圓右焦點F2且斜率為1的直線交橢圓于A、B兩點,弦AB的中點為T,OT的斜率為,

(1)求橢圓的離心率;

(2)設Q是橢圓上任意一點,F(xiàn)1為左焦點,求的取值范圍;

(3)若M、N是橢圓上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PN斜率,試求直線PM的斜率的范圍。

(1) (2) (3)


解析:

(1)根據(jù)題意設橢圓方程為

點A為       B點為       T點為

 

              即

         

         

(3)設,則

   

     

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設M為橢圓上任意一點,且
OM
OA
OB
(λ,μ∈R)
,證明λ22為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點,斜率為1且過橢圓右焦點F(2,0)的直線交橢圓于A,B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的長半軸長為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x=
a2c
(a為長半軸,c為半焦距)上.
(1)求橢圓的標準方程;
(2)求以OM為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心為坐標原點O,焦點在x軸上,斜率為1且過橢圓右焦點F的直線交橢圓于A、B兩點,
OA
+
OB
a
=(3,-1)
共線,則該橢圓的離心率為( 。
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

同步練習冊答案