給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域為R,值域為[0,
1
2
]

②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)在[-
1
2
,
1
2
]
上是增函數(shù).
其中正確的命題的序號是( 。
A、①B、②③C、①②③D、①④
分析:根據(jù)讓函數(shù)解析式有意義的原則確定函數(shù)的定義域,然后根據(jù)解析式易用分析法求出函數(shù)的值域;根據(jù)f(k-x)與f(-x)的關(guān)系,可以判斷函數(shù)y=f(x)的圖象是否關(guān)于直線x=
k
2
(k∈Z)對稱;再判斷f(x+1)=f(x)是否成立,可以判斷③的正誤;而由①的結(jié)論,易判斷函數(shù)y=f(x)在[-
1
2
,
1
2
]
上的單調(diào)性,但要說明④不成立,我們可以舉出一個反例.
解答:①中,令x=m+a,a∈(-
1
2
,
1
2
]
∴f(x)=|x-{x}|=|a|∈[0,
1
2
]
所以①正確;
②中∵f(k-x)=|(k-x)-{k-x}|=|(-x)-{-x}|=f(-x)
所以關(guān)于x=
k
2
對稱,故②正確;
③中,∵f(x+1)=|(x+1)-{x+1}|=|x-{x}|=f(x)
所以周期為1,故③正確;
④中,x=-
1
2
時,m=-1,
f(-
1
2
)=
1
2

x=
1
2
時,m=0,
f(
1
2
)=
1
2

所以f(-
1
2
)=f(
1
2

所以④錯誤.
故選C
點評:本題考查的知識點是利用函數(shù)的三要素、性質(zhì)判斷命題的真假,我們要根據(jù)定義中給出的函數(shù),結(jié)合求定義域、值域的方法,及對稱性、周期性和單調(diào)性的證明方法,對4個結(jié)論進(jìn)行驗證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
,
1
2
];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(-
1
2
3
2
]上是增函數(shù);
則其中真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
,
1
2
];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)在(-
1
2
,
3
2
]上是增函數(shù);
④函數(shù)y=f(x)的最小正周期為1;
則其中真命題是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數(shù)f(x)的定義域為R,值域為[0,
1
2
]
; ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;  ④函數(shù)f(x)是偶函數(shù),
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•昌平區(qū)二模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①函數(shù)y=f(x)的定義域為R,最大值是
1
2
;②函數(shù)y=f(x)在[0,1]上是增函數(shù);
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;④函數(shù)y=f(x)的圖象的對稱中心是(0,0).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m;在此基礎(chǔ)上有函數(shù)f(x)=|x-{x}|(x∈R).對于函數(shù)f(x)給出如下判斷:①函數(shù)f(x)是偶函數(shù);②函數(shù)f(x)是周期函數(shù);③函數(shù)f(x)在區(qū)間(-
1
2
,
1
2
]
上單調(diào)遞增;④函數(shù)f(x)的圖象關(guān)于直線x=k+
1
2
(k∈Z)對稱.則以上判斷中正確結(jié)論的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案