已知函數(shù)設(shè)表示中的較大值,表示中的較小值,記得最小值為得最小值為,則(      )
A.B.
C.D.
B
整理得
解得,可得,又,又圖象可知=
=-=A-B=-16,故選B
【考點(diǎn)定位】本題考查數(shù)形結(jié)合的思想,二次函數(shù)的性質(zhì)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的定義域?yàn)镈,如果,使 (C為常數(shù)成立,則稱函數(shù)在D上的均值為C. 給出下列四個(gè)函數(shù):①;②;③;④,則滿足在其定義域上均值為1的函數(shù)的個(gè)數(shù)是(    )
A.1          B.2           C.3            D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,最小值為4的函數(shù)是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知偶函數(shù)f(x)(x∈R),當(dāng)時(shí),f(x)= -x(2+x),當(dāng)時(shí),f(x)=(x-2)(a-x)().關(guān)于偶函數(shù)f(x)的圖象G和直線:y=m()的3個(gè)命題如下:
當(dāng)a=2,m=0時(shí),直線與圖象G恰有3個(gè)公共點(diǎn);
當(dāng)a=3,m=時(shí),直線與圖象G恰有6個(gè)公共點(diǎn);
,使得直線與圖象G交于4個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.其中正確命題的序號(hào)是(A)
A. ①②     B. ①③     C. ②③     D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為);
(Ⅱ)給定常數(shù),當(dāng)時(shí),求長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在R上的奇函數(shù)滿足 (x≥0),若,則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為
(I)求,的值;
(II)對(duì)函數(shù)定義域內(nèi)的任一個(gè)實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案