【題目】如圖,P是直線x=4上一動點,以P為圓心的圓Γ經(jīng)定點B(1,0),直線l是圓Γ在點B處的切線,過A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F(xiàn)兩點.
(1)求證:|EA|+|EB|為定值;
(2)證明:設(shè)直線l交直線x=4于點Q,證明:|EB||FQ|=|BF|EQ|.
【答案】
(1)證明:設(shè)AE切圓于M,直線x=4與x軸的交點為N,則EM=EB,
∴|EA|+|EB|=|AM|= = = =4為定值
(2)同理|FA|+|FB|=4,
∴E,F(xiàn)均在橢圓 =1上,
設(shè)直線EF的方程為x=my+1(m≠0),令x=4,yQ= ,
直線與橢圓方程聯(lián)立得(3m2+4)y2+6my﹣9=0,
設(shè)E(x1,y1),F(xiàn)(x2,y2),則y1+y2=﹣ ,y1y2=﹣
∵E,B,F(xiàn),Q在同一條直線上,
∴|EB||FQ|=|BF|EQ|等價于﹣y1 +y1y2=y2 ﹣y1y2,
∴2y1y2=(y1+y2) ,
代入y1+y2=﹣ ,y1y2=﹣ 成立,
∴|EB||FQ|=|BF|EQ|
【解析】(1)設(shè)AE切圓于M,直線x=4與x軸的交點為N,則EM=EB,可得|EA|+|EB|=|AM|= = = =4;(2)確定E,F(xiàn)均在橢圓 =1上,設(shè)直線EF的方程為x=my+1(m≠0),聯(lián)立,E,B,F(xiàn),Q在同一條直線上,|EB||FQ|=|BF|EQ|等價于﹣y1 +y1y2=y2 ﹣y1y2,利用韋達(dá)定理,即可證明結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點.
(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)f(x)滿足f(x)﹣f(﹣x)=2x3 , 當(dāng)x∈(﹣∞,0]時f'(x)<3x2 , 實數(shù)a滿足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 焦距為2,過點F2作直線l交橢圓于M、N兩點,△F1MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y= x,y=﹣ x于P,Q兩點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC= ,邊BC在平面α內(nèi),頂點A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為 ,則sinθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有某批次同一型號的產(chǎn)品共10件,其中有8件合格品,2件次品.
(Ⅰ)某檢驗員從中有放回地連續(xù)抽取產(chǎn)品2次,每次隨機抽取1件,求兩次都取到次品的概率;
(Ⅱ)若該檢驗員從中任意抽取2件,用X表示取出的2件產(chǎn)品中次品的件數(shù),求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:他們研究過圖(1)中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,所以將其稱為三角形數(shù);類似地,稱圖(2)中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A. 289 B. 1 024
C. 1 225 D. 1 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(以坐標(biāo)原點O為極點,x軸的正半軸為極軸)中,曲線C2的方程為ρsin2θ=2pcosθ(p>0),曲線C1、C2交于A、B兩點.
(Ⅰ)若p=2且定點P(0,﹣4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比數(shù)列,求p的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com