【題目】當(dāng)曲線與直線有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是__________

【答案】

【解析】分析:將曲線方程化簡(jiǎn),可得曲線表示以為圓心、半徑的圓的上半圓,再將直線方程化為點(diǎn)斜式,可得直線經(jīng)過(guò)定點(diǎn)且斜率為k,作出示意圖,設(shè)直線與半圓的切線為AD,半圓的左端點(diǎn)為,當(dāng)直線的斜率k大于AD的斜率且小于或等于AB的斜率時(shí),直線與半圓有兩個(gè)相異的交點(diǎn),由此利用直線的斜率公式與點(diǎn)到直線的距離公式加以計(jì)算,可得實(shí)數(shù)k的取值范圍.

詳解:化簡(jiǎn)曲線,得,

曲線表示以為圓心、半徑的圓的上半圓,

直線可化為,

直線經(jīng)過(guò)定點(diǎn)且斜率為k,

半圓與直線有兩個(gè)相異的交點(diǎn),

設(shè)直線與半圓的切線為AD,半圓的左端點(diǎn)為,

當(dāng)直線的斜率k大于AD的斜率且小于或等于AB的斜率時(shí),

直線與半圓有兩個(gè)相異的交點(diǎn),

由點(diǎn)到直線的距離公式,當(dāng)直線與半圓相切時(shí)滿足

解得,即

直線AB的斜率,

直線的斜率k的范圍為.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于點(diǎn)A,B,交其準(zhǔn)線l于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為(   )

A. y2=9x B. y2=6x C. y2=3x D. y2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在參加某次社會(huì)實(shí)踐的學(xué)生中隨機(jī)選取名學(xué)生的成績(jī)作為樣本,這名學(xué)生的成績(jī)?nèi)吭?/span>分至分之間,現(xiàn)將成績(jī)按如下方式分成組:第一組,成績(jī)大于等于分且小于分;第二組,成績(jī)大于等于分且小于分;第六組,成績(jī)大于等于分且小于等于分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的名學(xué)生中.

Ⅰ)求的值及成績(jī)?cè)趨^(qū)間內(nèi)的學(xué)生人數(shù).

Ⅱ)從成績(jī)小于分的學(xué)生中隨機(jī)選名學(xué)生,求最多有名學(xué)生成績(jī)?cè)趨^(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足則該數(shù)列的前18項(xiàng)和為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬(wàn)元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬(wàn)只并全部銷售完,每萬(wàn)只的銷售收入為萬(wàn)元,且

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當(dāng)a=3時(shí),求A∩B;

(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程的兩個(gè)根為.

(1)求的值;

(2)若函數(shù)上單調(diào)遞減,解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),如果同時(shí)滿足以下三條:對(duì)任意的,總有;;,都有成立,則稱函數(shù)為理想函數(shù).

(1) 若函數(shù)為理想函數(shù),求的值;

(2)判斷函數(shù)是否為理想函數(shù),并予以證明;

(3) 若函數(shù)為理想函數(shù),假定,使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

)求的值域

)若對(duì)于內(nèi)的所有實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案